
Solutions to Theoretical Problems

1 Ice pellets

a. With the given assumptions of constant droplet size
and constant atmospheric density the drag force
leads to a constant velocity v for the fall of the
droplet through the atmosphere.
We can assume that the droplet temperature Td
above hA follows the atmosphere temperature pro-
file (also see below) and remains constant and equal
to T0 = 0 ◦C during the melting below that height.
For small temperature differences ∆T = T − Td the
heat exchange rate is proportional to this difference
dQ/dt = κ∆T . The factor κ depends on the droplet
geometry and its velocity, as well as on the air den-
sity. Since these are constant κ = const.
In the region between hA and hB the droplet is there-
fore heated at a rate

dQ = κ (T − T0)dt = −κ (T − T0)
dh
v

, (1)

The total heat transfer between hA and hB is

Q =
κA

v
= mL , (2)

where A = 5.0km ◦C is the area between the tem-
perature curve and the height-axis in the region
between heights hA and hB. The right hand side
equates the heat with the latent heat necessary to
completely melt the ice droplet of massm.
In the region below hB the liquid droplet partially
freezes again. During this process the temperature
is again constant. Themass fraction η of liquid freez-
ing before reaching the ground can again be derived
from the area A′ = 4.0km ◦C between the curve and
the height-axis.

Q′ = −κA′

v
= −ηmL , (3)

Dividing (3) by (2) gives the mass fraction

η =
A′

A
=

4

5
= 0.80 . (4)

b. If the temperature profile follows the dashed line
the droplet will completely melt and the heat trans-
ferred from the atmosphere will heat it up. Since
the latent heat of melting is much bigger than the
specific heat of water times some degrees of tem-
perature variation the temperature of the liquid
droplet will closely follow the temperature of the
atmosphere eventually. Its temperature at ground
level should therefore be close to 8 ◦C.
For a better estimate let us introduce a new coor-
dinate x whose origin is at the height, where the
droplet is completelymolten (somewhat higher than
hB), and which is oriented downwards. For the
change in temperature of the droplet we then have

mcwater
dTd
dt

= mcwater v
dTd
dx

= κ (T − Td) , (5)

where the temperature of the atmosphere is given
by T (x) = T (x = 0) + 2.0 ◦Ckm−1 x =: T (x = 0) + b x.

For the difference ∆T = T − Td between the atmo-
spheric temperature and the droplet temperature
we have:

d∆T

dx
= b− dTd

dx
= b− κ

mcwater v
∆T . (6)

This differential equation is solved by

∆T = b x0 + const · exp(−x/x0) , (7)

where x0 = mcwater v/κ. From equation (2) we find
that mv

κ = A
L such that x0 = cwater

L A ≈ 0.063km.
Therefore the exponential factor in the above equa-
tion is negligible at ground level (the constant is
close to 4 ◦C) and we arrive at a temperature differ-
ence between the droplet temperature and the at-
mospheric temperature at ground level of

∆T ≈ 0.13 ◦C, and therefore Td ≈ 7.9 ◦C . (8)

Another phenomenon, which effectively shifts at-
mosphere temperature as it is “felt” by the droplet
is due to viscous dissipation. It can be estimated by
equating the droplet potential energy loss rate mgv
to thermal power carried away by the circumfluent
air κ∆T ∗. This gives∆T ∗ ∼ mgv/κ = gA/L = 0.17 ◦C.
If both corrections were taken into account, then
the droplet temperature before hitting the ground
would again be Td ≈ 8.0 ◦C.

Part Perliminary Marking Scheme Points
a. Realizing that the velocity is constant 1.0

Realizing that the droplet tempera-
ture during melting equals 0 ◦C

1.0

Using Newton’s cooling law and re-
alizing that proportionality factor is
constant

1.0

Expressing heat by area and equat-
ing it with latent heat

1.0

Determining the areas in the graphs 0.5
Calculating the mass fraction 0.5
Subtotal 5.0

b. Arguing that the temperature of the
droplet closely follows the tempera-
ture profile (explicit or implicit)

1.0

Formulating differential equation
for the (relative) droplet tempera-
ture

1.0

Finding solution for (relative) tem-
perature

1.0

Determining relevant parameter in
solution from previous results

0.5

Realizing that exponential part is
negligible at ground level

1.0

Giving numerical result for droplet
temperature

0.5

Subtotal 5.0

Note: If students take the final temperature as equal to
atmospheric temperature at ground they are awarded
1.5 point at maximum for part b.
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2 Motion of a charged ball

The forces acting on the ball are the static frictional
force F⃗ , the gravitational force, the normal force, and the
Lorentz force F⃗L caused by the magnetic field. None of
these forces performmechanical work on the ball, so the
total kinetic energy of the ball is conserved. Due to the
condition of pure rolling, the speed of the center of the
ball v is proportional to the angular speed ω of the rolling
motion, i.e. the total kinetic energy can be expressed in
terms of v2. As a result, the speed of the center of the
ball remains constant, but the direction of velocity may
change.
The net Lorentz force acting on the ball can be ex-

pressed with the help of the velocity of the center of the
ball v⃗ :

(1) F⃗L = Qv⃗ × B⃗,

which canbe provenby summingup themagnetic forces
acting on the small pieces of the ball.

Proof 1. Let us denote the charge of the ith small piece by∆Qi, the
position vector directed from the center of the ball to the small piece
by x⃗i. The velocity of this small piece is given by

v⃗i = v⃗ + ω⃗ × x⃗i,

so the net Lorentz force can be written as

F⃗L =
∑

i

∆Qiv⃗i × B⃗ =
∑

i

∆Qiv⃗ × B⃗ +
∑

i

∆Qi (ω⃗ × x⃗i)× B⃗.

The second sum gives zero, because terms containing x⃗i and −x⃗i can-
cel each other pairwise. From the first sum v⃗ × B⃗ can be taken out,
so at the end the net force is the same as the Lorentz force acting on a
point charge moving with the velocity of center of mass

The speed of the center of the ball does not change,
i.e. the net force (which is horizontal) should be perpen-
dicular to the velocity v⃗ of the center. Since the Lorentz
force is always perpendicular to v⃗, so should be the static
frictional force F⃗ , aswell. Themagnitude of F⃗ cannot de-
pend on the position, only on the speed of the ball, so |F⃗ |
must remain constant during themotion. As a result, the
net force (i.e. the acceleration of the center of the ball) is
constant in magnitude, so the ball’s center will perform
a uniform circular motion with speed |v⃗| = v0 (see the
Figure).

Now we can write down the equation of motion of the
ball. The acceleration of the center of mass is horizontal,
which is caused by the static frictional force and the net
Lorentz force, so with the help of equation (1) Newton’s
2nd law in the radial direction can be written as

(2) QvB − F = mrΩ2,

where r is the radius of the circular trajectory of the cen-
ter of mass and Ω is the angular speed of the circular
motion. We can obtain a relationship between the two
angular speeds from the condition of pure rolling:

(3) v0 = Rω = rΩ .

The magnetic field also exerts a net torque on the
charged ball. The torque is given by

τ⃗L =
Q

2m
L⃗× B⃗,

where L⃗ is the angular momentum of the ball with re-
spect to the center.

Proof 2. As the ball rolls on the surface, moving charges form loop
currents which represent a net magnetic moment. A small piece of
charge∆Qi corresponds to current

Ii =
|ω⃗|
2π

∆Qi,

so the contribution of this piece to the netmagneticmoment µ⃗hasmag-
nitude Ii πx2

i,⊥, where xi,⊥ is the distance of the small piece from the
rotation axis of the ball. The direction of the net magnetic moment is
parallel with the vector ω⃗, and its magnitude can be written as the sum

µ⃗ =
1

2
ω⃗
∑

i

∆Qi x
2
i,⊥ .

Herewe don’t need to evaluate the sum (integral), if we use the analogy
with the moment of inertia:

∑

i

∆mi x
2
i,⊥ =

2

5
mR2 −→

∑

i

∆Qi x
2
i,⊥ =

2

5
QR2 .

So the net magnetic torque acting on the ball (in the form of couples)
is given by

τ⃗L = µ⃗× B⃗ =
1

5
QR2ω⃗ × B⃗ =

Q

2m
L⃗× B⃗ .

The angular acceleration of the ball is caused by the
frictional torque and the magnetic torque. As it can be
seen from the Figure, both torques have the same direc-
tion, which is perpendicular to the ball’s angular veloc-
ity. As a result, the axis of rotation of the ball precesses
in the horizontal plane. To satisfy the condition of pure
rolling, the angular speed of the precession must be Ω.
During precession the rate of change of the angular mo-
mentum is given by |L⃗|Ω, so the equation of rotational
motion for the center of the ball is

(4)
1

5
QR2ωB

︸ ︷︷ ︸
|τ⃗L|

+RF =
2

5
mR2ω

︸ ︷︷ ︸
|L⃗|

Ω.

From equations (2), (3) and (4) the radius and the an-
gular velocity of the circular motion can be expressed:

r =
7

6

mv0
QB

and Ω =
6

7

QB

m
.

3 Water hose

To begin with, let us notice that the envelope of the
trajectories of balls thrown from the origin with the
same launching speed v at different launching angles is



Solutions to Theoretical Problems

a parabola (1 pt), and the focus of the parabola is the
launching point (1 pt).

This fact can be proved as follows (the proof is not required from the
contestants). The trajectory of the ball can be expressed parametrically
as x = v cosαt, y = v sinαt− 1

2gt
2. Upon eliminating t we obtain

y = x tanα−
g

2v2
x2(1 + tan2 α).

We can consider this as an equation for finding the angle α to reach
the point (x, y):

gx2 tan2 α− 2v2x tanα+ 2v2y + gx2 = 0.

The points at the envelope separate the points for which the solution to
this equation does exist from the points forwhich the solution does not
exist, hence for the envelope points the discriminant of the equation
must be zero,

v4x2 = gx2(2v2y + gx2) ⇒ y =
v2

2g
−

gx2

2v2
.

Whatwe got is a parabola, and the position of the focus can be deduced
from this formula. Alternatively, the position of the focus can be de-
duced from the fact that light rays parallel to the axis of a parabola con-
verge after reflection from the parabolic shape into its focus. Indeed,
the touching point of the envelope with a trajectory of a ball launched
at α = 45◦ must lie at y = 0 as this launching angle is known to provide
the longest flight distance. Hence, the envelope and the x-axis meet at
45◦, so that a vertical beam hitting the envelope at y = 0 is reflected by
the envelope into a horizontal line. The focusmust lie on that reflected
beam, i.e. at y = 0.

The parabolic trajectory of each water parcel must
touch the envelope (1 pts). Using the knowledge that the
launching angles of the water parcels were never less
than 45◦, we conclude that the touching point must lie
at y ≥ 0 (1 pt). This can be seen from the fact that a
parcel launched at 45◦ will meet the envelope at y = 0,
and increasing the launching angle will raise the touch-
ing point.

There are many ways of proving it more rigorously. For instance,
one can use the fact (proved below) that the launching velocity and
the tangent to the envelope at the pointAwhere the trajectory and the
envelope meet are perpendicular to each other: with α + β = 90◦ (β
denotes the angle between the tangent and the horizon) we conclude
that increasing α means decreasing β, hence raising A. To prove that
α+β = 90◦, let a vertically up-directed beam be reflected from the tra-
jectory at A: it will go through the focus of the trajectory which means
that if we continue it through the focus and let it be reflected a second
time from the same trajectory, it will propagate vertically down. The
trajectory and the envelope are tangent atA, so the first reflection was
also a reflection from the envelope and the reflected beam must go
through the focus of the envelope, i.e. the launching point O. Point O
lies on the trajectory, so the second reflection point must beO. As a re-
sult of the two reflections, the beamwas diverted by 180◦ whichmeans
that the double sum of the incidence angles must have been 180◦, and
hence 2α+ 2β = 180◦.

The water parcels close to the origin are clearly yet to
reach the envelope, and those parcels below the ground
level have clearly passed the point where they touched
the envelope. Since the parcels form a continuous curve,
there must be at least one point P which is exactly at the
envelope 1 pts).
There are two ways of finding the position of the point

P . The first approach is as follows. Notice that at P , the
water curve is tangent to the envelope (1 pt). Hence, ver-
tical line drawn through P will be reflected by the water
curve so that it will go through the focus O (1 pt). So,
we need to find by trial and error such a point P on the
upper segment of the water curve that the line OP and
a vertical line drawn through P will form equal angles
with the water curve at P (finding the position of P with
a reasonable accuracy: 1 pt), see the figure below.
Alternatively, we can use the fact that for any point on

a parabola, its distance from the focus plus its distance

from a horizontal line is constant. So, for an arbitrary
point Q = (x, y) on the envelope, y +

√
x2 + y2 = 2H ,

where H is a constant, and for any point beneath it, y +√
x2 + y2 < 2H . Hence, among all the points at the water

curve, the point P has the largest value of y+
√

x2 + y2 (2
pts). We can evaluate y +

√
x2 + y2 for a series of points

at thewater curve andfind the onewith the largest value
(finding the position of P with a reasonable accuracy: 1
pt).
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Once we have found the point P , we can easily find
the height of the topmost point of the envelope due to
the equality y +

√
x2 + y2 = 2HP : for the topmost point,

x = 0 so that its y-coordinate 2y = 2HP , hence y = HP ;
The topmost point of the envelope would be reached by
a water parcel launched vertically, so v2 = 2gHP , and
v =

√
2gHP (1 pt). From the figure we can find 2HP =

(3.3 +
√
10.82 + 3.32)m ≈ 14.6m so that v ≈ 12m/s (1 pt).



ω Ω
v

QvB

L

L
Ω

L

τ⃗B = µ⃗× B⃗

Ω r



y ≥ 0

y +
√
x2 + y2

P

v = yP +
√
x2
P + y2P ≈ 12m s−1

v >
√
g · 11.5m

v >
√
2g · 4.9m

v <
√
4g · 4.9m

y = 2.6m x = 11.5m

v ≥ 11.8m/s

v ≥ 11.9m/s

v ≤ 12.2m/s

v ≤ 12.1m/s

v 12.0m/s


