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T1: Sliding puck - Solution

When the puck moves along the wall, two forces
(in addition to gravity and the normal force of the
horizontal ground, which cancel each other out) act
on it: the normal force of the wall (which changes
the direction of motion of the puck) and the friction
between the puck and the wall (which changes the
speed of the puck and also causes the puck to start
rotating).

So as the puck moves along the circular wall, the
speed of the puck decreases and the angular veloc-
ity of the puck’s rotation around its vertical axis in-
creases. The motion of the puck is rolling with slid-
ing along the wall. At a certain point in time t;, the
contact point of the puck may have zero velocity and
kinetic friction becomes static. From this point on-
wards, the puck will be rolling without sliding along
the wall.

From the zero velocity of the contact point, we find
the relationship w =v/r.

Let’s focus on rolling with sliding first. The normal
force N of the wall on the puck is also perpendicular
to the velocity of the puck at any instantaneous po-
sition of the puck. Force N changes the direction of
the velocity v. From Newton’s law in normal direc-
tion, we find N = mv?/R, where m is the mass of the
puck. Thus, the magnitude of the frictional force is
Ff = uN = umv*/R.

Solution 1: The equation for the translational mo-
tion of the puck is

dv V2

M T MR

and in the integral form including the initial condi-

tions ) .
d
/ —Z:—E/ dt
Vo v R 0

where the time t = 0 is the time at which the puck

meets the semicircular wall and has the initial veloc-

ity vo. Solving the integrals gives
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which leads to
Vo

1+t/t

v(t) = (2)

where 7 = R/vou. The graph drawn with the solid red
line shows the time dependence of v.
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The rotation of the puck around its axis of symme-
try is caused by the torque of the frictional force act-
ing on the puck at the point of contact between the
puck and the wall, My = rF; = rumv?/R, where the ra-
dius of the puck r is the arm. The equation for the ro-
tational motion of the puck, which results from New-
ton’s second law Idw/dt = My, can be written as

dw umr? , 2u V2
r— = V=
dt RI

TR (1+t/7)?

where I = mr?/2 is the moment of inertia of the puck
for rotations around its axis of symmetry and w is
the angular velocity of this rotation. The product
rw gives the relative speed of the point of contact
between the puck and the wall with respect to the
puck’s center of mass. The integral form of this equa-
tion, including the initial conditions, is

r/wdw_zw,/f dt
0 T Jo (L+t/7)?

and the solution is
(3)

The graph of rw(t) is drawn by the blue line.

The two solutions (2) and (3) are only valid up to
the time t; at which the functions v(t) and rw(t) inter-
sect, v(t;) = rw(t;). At this moment, the points on the
puck that touch the wall no longer move in relation
to the wall and the puck no longer slides along the
wall. There is no more friction. From this moment
on, the motion of the puck is a frictionless translation
and rotation with v = v(t;) = v; and w = v{/r. For t; we
get t; = 7/2. At t;, the translational speed is v; = 2vy/3.

There are two possible scenarios for the motion of
the puck along the semicircular wall: it rolls with
sliding along the entire wall or it starts rolling some-
where along this path without sliding. To see what
happens, and also to get the exit velocity of the puck
ve, Wwe need to calculate how the path of the puck in-
creases with time, which is defined by equation (2),
dl/dt = v(t). We integrate in time from ¢t = 0 to t and in
distance from 0 to I and get

el

(4)
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If we use [, = 7R, equation (4) gives the time t, = t(l,) =
T (expmu —1).

Iftc > t1 = 7/2 i.e. 7u > In3, then the puck starts
to roll somewhere on its semicircular path along the
wall without sliding and its speed when leaving the
wall is v, = vy = 2v/3.

Ift, <t; =t/2i.e. mu <1In2, then the puck still rolls
with sliding when it leaves the wall, since its trans-
lational speed v, is still greater than 2v,/3. The exit
speed is obtained from (4) by inserting t = t.,

()

Ve = V(t = te) = vo exp(—7u).

The graph v.(u) is shown in the figure.

Ve
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2

Solution 2: The equation for the translational mo-
tion of the puck is

dv v2

mE =—-um-—

which can be rewritten with dl =vdt =Rdg as

v u

7 = _ﬁdl = —yd(p

We recognize the dependence of v on g;

V = Vg exp(-uo), (6)

where ¢ = 0 at the beginning of the semicircular wall
and ¢ = m at its end. It describes the dependence
of v on ¢ under the condition that the puck rolls and
slides at the same time.

Due to the torque of the frictional force the puck
also starts to roll along the wall and its instantaneous
angular velocity is w. Let us introduce the speed
v/ =rw: when V' reaches the instantaneous speed v, it
no longer changes (see Solution #1 for explanation).
The equation for the rotational motion of the puck is
(see Solution #1 for explanation)

Lo _ av'  umr® ,
dt —dt RI

Having already written the function v(p) (6), we
also want to write v’ as a function of ¢. We start with
the relation

av’  dv' de
dt  do dt

and with the use of dg/dt = v/R we get

dv' = 2uvo exp(—p@)de

and solving a simple integral

v o
/ dv’ = 2pvo / exp(-up)de
0 0

we get

V() =rw(@) = 2vo(1 - exp(-uy)). (7)
If we equate v and v/, we get a critical angle ¢. at
which rolling with sliding changes to rolling without
sliding,

—lnE
HPe = 2

At the critical angle, the final velocity is vy =
Vo Xp(=@c) = 2vo/3.

If . > mi.e. umr < In2, the puck still slides at the
exit with the exit speed v, = voexp(-un) and if ¢, < 7
i.e. um >1n 3, the puck rolls at the exit without sliding
with the final speed v, = vy = v(¢.) = 2vo/3.

From the way the problem is solved in the second
solution, it can be seen that the exit speed of the puck
does not depend on a particular shape of the wall;
the speed and the angular velocity depend only on ¢
(and the friction coefficient u). For example, the wall
could be elliptical instead of a semicircle (or have a
different shape).

suggestions for marking scheme

Part T1.a): Scores Pts.
realizing that puck is sliding initially 0.3
realizing that puck may roll without sliding | 0.3
stating that sliding ends when roll condition | 0.3
Vv =rw is met

equating the normal force with mv?/R 0.3
using Fy = uN for the friction force 0.3
equation of motion (eom) for translation (-0.2 | 0.4
for wrong sign)

giving integral expression for translational | 0.5
eom with correct initial conditions

giving expression for v as function of time or | 1.0
angle as in eq. (2) or (6)

equation of motion (eom) for rotation 0.4
using I = mr?/2 as moment of inertia 0.3
giving integral expression for rotational eom | 0.5
with correct initial conditions

giving expression for rw as function of time | 1.0
or angle as in eq. (3) or (7)

getting time % or angle ln(g) /u for transi- | 0.5
tion to rolling without sliding

obtaining critical coefficient of friction y. = | 0.5
In(3/2)/m

finding final velocity %v, for rolling without | 0.4
sliding

finding velocity v, if puck slides the whole | 1.0
time

Total on T1.a) 8.0
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Part T1.b): Scores Pts.
graph has suitably labelled axis 0.2

initial speed vy indicated in graph 0.2

graph shows v, decreasing with g initially 0.3

initial exponential decrease of v, with g indi- | 0.3

cated in graph

critical point exists and is indicated in graph | 0.4

constant speed after the critical point 0.4

obviously not smooth function at critical | 0.2

point

Total on T1.b) 2.0

General rules for marking in T1:
» The grain size for marking is 0.1 Pts.

» Partial marks can be awarded for most aspects.
¢ For each mistake in calculation (algebraic or nu-

meric) 0.2 Pts. are deducted.

» If a mistake leads to a dimensionally incorrect ex-

pression no marks are given for the result.

* Propagating errors are not punished again unless
they are dimensionally wrong or entail oversim-
plified/wrong physics (e.g. neglecting friction ef-

fects).
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T2: Spaceships - Solution

Analytical Solutions

Let us denote the reference frames of Alice, Bob and
gift by A, B, G, respectively. We shall use the notation
1

Yo = V1-v?/c? )
Part a) (i)

Solution 1: Let, be the distance between two gifts
in frame x. Since G is the rest frame of the gifts, we
have l4 = lg/yy, s = lg/yv,, Where vg is the relative ve-
locity of frames B and G. According to the formula for
relativistic addition of velocities, the relative velocity
vp is given by

-2 (®)

Vp = ——mM8M8
B 1+uv/c: 37

where we used the values u = 2c,v = fc. Together
with 14 = vAty this gives

16
lg = VAt()& = —AtpcC.
Yvy 37

Solution 2: Let us consider the two events that gift
1 is sent and the consecutive gift 2 is sent. Accord-
ing to Lorentz-transformation, if an event has coordi-
natest, x in a certain reference frame, the same event
has coordinates t’ = (t — ux/c?)y., x’ = (x — ut)y,, where
u is the relative velocity of the reference frames. In
A, these events have coordinates (¢4, x1,4) = (0,0) and
(t2,4,X2,4) = (Aty,0). The relative velocity of A and B
is —u. Therefore, in B these events have coordinates
(t1,8,x1,8) = (0,0) and (tz,p,x2,8) = (Tyu, Uhtoyy).

We thus need to determine the position of gift 1 at
time t, 5 in frame B. If vg is the relative velocity of the
gift and B given by (8), the position of gift 1 is given
by x15(t28) = vty 3. Hence, in frame B the distance
between the two gifts is

16
lp = x1,8(t2,8) — X2,8(t2,8) = (vp — u)Atoyy = ﬁAtOC-

Solution 3: The time interval Aty = Atps is the
proper time of events in Alice’s frame (Alice send-
ing gifts, which happen at the same location in Al-
ice’s frame), which is moving with u in Bob’s frame.
Time interval between these events in Bob’s frame
is Atop = yultoa. The speed of the gift Alice sent in
Alice’s frame is vy = v = fs—*c and in Bob’s frame the
speed of the gift is vz as found in (8). In Bob’s frame
in the time interval Atpp two gifts are sent. During
this time the Alice’s ship has moved for uAty g, the pre-
viously sent gift for vgAtyp and the distance between
both gifts in Bob’s frame is

lg = (vg —u)Atop = 16<:At
B=(vB 0B = 5= CAl.

sending gift #1
in Bob's frame at ¢ =0

Alice's ship $ gift #1

sending gift #2

in Bob's frame at Alice's ship o gift #2 o gift #1
ulto,p lp
vpAto,p

Solution 4: If a student solves Part (ii) first, then
the distance between two of the gifts from Bob in
Alice’s reference frame is the product of the time be-
tween arrival, At;, and the speed of Bob’s gift in Al-
ice’s frame, which is found from the relativistic ve-
locity addition in Eq. 8. Then

lp = vpAt; = 3 c 18 At —1—60At
BUER T A37) " \35) 70 T 37
Part a) (ii)
Solution 1 Assuming that the Part (i) is solved first

The time interval is given by

g 16
Aty = 2 = 2t
VB 35

Problem 2.(a): Using Solution 1 pts
Formula for relativistic addition of velocities | 0.5
each mistake -0.3

Speed vp of Alice’s gift in B (35/37 = 0.945) 0.5
must have correct formula

Find la 0.5
y formula 0.3
each mistake -0.2

l; = l;/y only true in rest frame 0.7
Boost I4 to G frame 0.3
each mistake -0.1

Boost from G frame to I3 0.2
each mistake -0.1

Collect expressions for I3 0.5
correct numerical result (16/37 = 0.432) 0.5
must have correct formula

Aty =lg/vp 0.5
correct numerical result (16/35 ~ 0.457) 0.5
must have correct formula

Total for 2.(a) 5.0
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Problem 2.(a): Using Solution 2 or 3 pts
Formula for relativistic addition of velocities | 0.5
each mistake -0.3

Speed v; of Alice’s gift in B (35/37 = 0.945) 0.5
must have correct formula

y formula 0.3
each mistake -0.2

because two subsequent gifts are sent from | 0.7
the same place in Alice’s frame

Atg p = Yuldty 0.3
each mistake -0.1

In Bob’s frame, second gift at position uaAtyp | 0.7
while first gift at vzAtyp

each mistake -0.2

Collect expressions for I3 0.5
correct numerical result (16/37 = 0.432) 0.5
must have correct formula

Aty = lg/vp 0.5
correct numerical result (16/35 ~ 0.457) 0.5
must have correct formula

Total for 2.(a) 5.0

Important Notes for marking Problem 2

» Correct final answers without justification can re-
ceive full marks; incorrect final answers without
justification will receive no marks, even if the an-
swer is “close” or if it can be guessed what the
error was.

* The statement “must have correct formula” means
that the any immediately preceeding symbolic for-
mula to the numerical number must be correct to
receive any points for a numerical answer.

e Correct numerical result is dependent only on the
immediate formula from which it is computed.

* Adimensionally incorrect formula gets zero marks.

¢ Student can define ¢ = 1 explicitly without penalty,
but inconsistencies are treated as errors.

e Follow on errors normally only have penalty at
point of error

* Numerical results that are follow on errors are not
penalized twice

* must have recognized light time correction need
at least once to get points for ratio formula AND
result

» Transcription errors are errors

e If Part a) is solved without the explicit use of spe-
cial relativity, then the maximum possible for part
a) is 0.5 pts.

e If Part b) is solved without the explicit use of spe-
cial relativity, then no points are awarded.

» For final answer on Part b), must have correct for-
mula; non integer numbers that round to 18 get
only +0.2 pts.

* Any other mistakes or errors not explicity covered
in the marking schemes should be treated a fully
wrong for the category; so if a category is listed
as 0.6, and the student work is incorrect, and no
other disclaimer applies, then the score would be
0.

e If a student could only reasonably have correctly
completed some task by correctly doing the previ-
ous tasks, then the previous tasks should be fully

awarded, even if not explicitly written. However, if
the tasks are written, and have errors, the student
will get the appropriate deductions.

 Ifit can be argued that a student could only reason-
ably have completed some task by correctly doing
the previous tasks, but the answer to the shown
task is incorrect, then the previous tasks should
receive zero marks if not explicitly shown.

Part (b)

Solution 1: Suppose that at ¢4 = 0 Alice sees Bob’s
spaceship at distance dg. The time that the light trav-
elled from Bob to Alice is t; = dp/c. (In Alice’s frame,
the actual distance from Alice to Bob’s spaceship is
L =dp —udy/c.)

Let us first compute the number of visible outgoing
gifts. Alice sees all gifts she sent until she sees them
reach the spaceship. Consider the gift which Alice
just sees arriving at Bob, which is the oldest visible
gift. If this gift flew past Bob’s ship, it would be lo-
cated at distance dj + vt;. Therefore the number of
gifts between the oldest visible gift and Alice is

dp + vt dpy(1+v/c
Ny = 2Vl _ b( /)'

la VAt,

Alternatively, one can observe that d,/l, gifts were

between the considered gift and Alice at time -t;.

During time t; Alice sent out an additional number
dp  dp

t;/ Aty gifts, giving Ny = st o

We now compute the number of visible incoming
gifts. Alice sees the newest visible gift just leave
Bob’s ship. In Alice’s frame, the actual distance of
her to the newest visible gift is dg — vgt; = d(1 — vg/c).
The distance between incoming gifts is Iz, which was
computed in part a). Hence, the number of visible
incoming gifts is

_dg(1—-vg/c) _dg(1-vg/c)37

N.
m Ig Atoc 16

In total, we have

Now  (1+v/c)c 16
Nin  (1-vg/c)v37

Solution 2 Since both Alice and Bob send the gifts
in exactly the same way and their relative speed to
each other is also the same (which is always the
case), there is symmetry between them. Bob sees
exactly the same number of gifts he will receive as
Alice, and the same is true for the gifts sent. So we
can continue in Bob’s frame (where Bob is station-
ary).

First, let us look at the gifts Bob receives (and we
stay in his frame the whole time). Between Bob and
Alice at any moment, there are a finite number of
gifts that have already been sent by Alice and not yet
received by Bob. However, Bob does not see them all
because the light of the most distant gift has not yet
reached him. The furthest gift #A that Bob can see
was sent to him at time ¢t = 0 (in Bob’s frame) and Bob
sees it for the first time at time t;, when it has already
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traveled the distance vgt; and the light of this gift,
emitted at time ¢t = 0 (when it was sent) has traveled
the distance ct; and has just reached him (at time t;
Bob sees the gift #A sent from Alice’s position at time
t = 0). The distance between two consecutive gifts
moving towards Bob is vpAt; (see part (ii), solution
1). The number of gifts that Bob sees at any point in
time and that move towards Bob is

N _(c—vp)ty 9
AoB= ——— (9)
vpAty
gift #A was sent
in Bob's frame at ¢ =0 vpAly
| ! gift #A
Bob R < < < < < < < < < < Alice
I
gift #A
4 © © o <o o o

visible gifts traveling towards Bob
(where they are in his frame at 71, ! vpty
not where Bob sees them)

Let us now turn to the gifts that Bob sends to Alice.
Bob sees all his gifts that have not yet reached Alice
at the time of observation, and some more that have
been with Alice for some time and are probably eaten
- only the information about the receipt of the gifts
has not yet reached Bob. Let the moment ¢t = 0 be
the moment at which the gift #B sent by Bob reaches
Alice. At this moment, the light from Alice begins to
travel back to Bob with the information about the re-
ceipt of the gift and reaches Bob at time ¢; - then Bob
realizes that the gift #B has been received. Between
t = 0 and t;, Bob regularly sends more gifts in the
usual way; therefore, there are more gifts that Bob
can see on the way to Alice than there actually are
(remember: we are always talking about how things
are in Bob’s frame; when and where they happen).
It’s practically the same as the received gift #B moves
further beyond Alice and travels an additional dis-
tance vt; before Bob realizes it’s being received by
Alice. The number of gifts that Bob sees at any point
in time and that move away from Bob is

(c+v)ty
Npp=—"— (10)
VAt
gift #B was received
in Bob's frame at ¢ — 0 vAty
gift #B
Bob n O < < < < < < < < < & Alice

gift #B

visible gifts traveling away from Bob
(where they are in his frame at 7,
not where Bob sees them)

gifts, already received by Alice, but still
visible to Bob (Bob sees gift #B at
position of Alices's ship at =0)

The gift #4 is sent by Alice to Bob at time ¢t = 0 and at
the same moment Alice receives the gift #B from Bob

(same time and place), and Bob observes travelling
gifts at time ¢;.

The ratio of the number of gifts moving away from
him and towards him is

Np_a _ (c+v)ty
VAL,

vpAty
(c—vp)ts

+ At
_ (c+v)vpAty _1g,

VAty(c —v) (a1

Ny

where the previously obtained relationships At =
32At; and vp = 32¢ were used together with the given

_ 4
V_SC‘

Problem 2.(b) pts
Identify a distance to Bob dp 0.3
Light time to Bob ¢ 0.5
Recognize need to correct for light time 0.5
dag =dp+tv 0.9
each mistake -0.3

Na—p = dac/La 0.2
Recognize need to correct for light time 0.5
dpg = dp — tjvp 0.9
each mistake -0.3

Np—a =dpc/Lp 0.2
symbolic ratio 0.5
each mistake -0.2

correct numerical result (18) 0.5
must have correct formula

Total for 2.(b) 5.0

Graphical Solutions

Throughout the graphical solution, it is assumed that
¢ =1 and Atyg = 1. In order to return to a consistent
solution, make sure to include these factors appro-
priately in the final answer.

Part a)i

The question is asking for the separation between
two events that happen at the same time in Bob’s
reference frame. The graph is in Alice’s reference
frame, also shown in the graph are the world line of
Bob, with a slope of —5/3, and the x-axis of Bob, with
a slope of —-3/5. The red circle on Alice’s world line is
the launch of a gift from Alice, the black circle at the
origin is another launch of a gift from Alice.

O

XAlice

20 12 16
57> —37)a = (37, 0)p

Aty
XBob

tAlice

We are interested in the intersection of the first
launched gift, which has a slope of 5/4, where it
crosses the x axis of Bob. In Alice’s reference frame,
that point is
37’ 37

0 = (20 —12)



EuPhO

2024 . KUTAISI . GEORGIA

Applying the Lorentz transform into Bob’s refer-
ence frame,
5120 -3\ (-12 16
A== - =) ===
4|37 (5)(37)' 37

Alternatively, it is possible to focus on the Lorentz
invariant expression,

(ta)? = (xa)® = (tn)* — (xp)*
where t, = 0, and arrive at the same result.

Part a)ii

It is expected that most students will get an answer
that depends on the result of Part a)i, and the tech-
nique is outlined in the analytical section.

It is also possible to solve Part a)ii without solving
Part a)i. Consider world-lines for Alice and Bob that
intersect at the origin, and assume that both send a
gift to the other at this intersection.

O

Aty

Ato 12 _ 20 16
g,—g)a = (Q‘g)b

Alice

~

\ Bob

The question is asking for the time interval be-
tween two events that happen in the same place in
Bob’s reference frame.

The world-line of Bob has a slope of -5/3; the world-
line of the gift from Alice has a slope of 5/4. Assuming
Aty = 1, then the gift from Alice arrives with Bob in
Alice’s coordinate system as

12 -20
060 =50 =
35" 35

Applying the Lorentz transform into Bob’s refer-
ence frame,
51-20 -3\ (12 16
M= |— - |=]||=]|l==
4‘ 35 (5 )(35)' 35

Alternatively, it is possible to focus on the Lorentz
invariant expression,

(ta)® = (xa)? = (tp)* = (x0)*

where x;, =0, and arrive at the same result.

Because of the symmetry, the time interval be-
tween arrivals of Bob’s gift in Alice’s frame is the
same as the time interval between arrivals of Alice’s
gift in Bob’s frame. The transfer of the gifts in shown
in the figure. It is not necessary to sketch this green
line.

Problem 2.(a)i pts
Clearly indicated graph or related equations | 0.2
Bob’s x axis correct slope (-3/5) 0.2
Gift from Alice correct slope (5/4) 0.2
Gift released Aty before Origin 0.2
Recognize intersection of gift and xp 0.3
Find intersection in Alice Frame 0.5
1. y formula 0.3
1. each mistake -0.2

1. Use Lorentz Transformation 0.1
1. Apply Lorentz Transformation 0.5
1. each mistake -0.2

2. Use Lorentz invariance 0.4
2. recognize Axy =0 0.2
2. Apply Lorentz invariance 0.3
2. each mistake -0.2

correct numerical result (16/37) 0.5

Important Notes!

1. Scores can be received for method 1 or method
2, but not both; if both are attempted, award the
higher total, but never more than 0.9 pts.

If Part a)ii is solved analytically

Problem 2.(a)ii pts
Formula for vagdition 0.5
each mistake -0.3

Speed v, of Alice’s gift in B (35/37) 0.5
must have correct formula

Aty = Lp/vy 0.5
correct numerical result (16/35) 0.5
must have correct formula

If Part a)ii solved graphically, then

Problem 2.(a)ii pts
Clearly indicated graph or related equa- | *0.2
tions

Bob’s t axis correct slope (-5/3) 0.2
Gift from Alice correct slope (5/4) *0.2
Gift released Aty before Origin *0.2
Recognize intersection of gift and tp 0.3
Find intersection in Alice Frame 0.5
1. y formula *0.3
1. each mistake -0.2

1. Use Lorentz Transformation *0.1
1. Apply Lorentz Tranformation 0.5
1. each mistake -0.2

2. Use Lorentz invariance *0.4
2. recognize Axp =0 0.2
2. Apply Lorentz invariance 0.3
2. each mistake -0.2

correct numerical result (16/35) 0.5

Important Notes!

1. A student who does both a)i and a)ii graphically
can only get points for the starred (*) categories
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for the work in a)i, and not also for the work in
a)ii.

2. The maximum possible score is 5 pts! If a student
does graphical approaches for both, and makes
mistakes, the final score for Part a) must be less
than 5 by an amount equal to the mistakes made.

Part b)

Consider the movement of gifts in Alice’s reference
frame. Green gifts are headed toward Alice, red gifts
are headed away from Alice. If Alice makes an instan-
taneous observation, Alice will see the gifts at loca-
tions along the intersection with the diagonal light
line. This is quite different from the questions of the
separation of the green gifts or the red gifts in Alice’s
rest frame, which is measured by the separation at
the same time, for example, the intersections with
the x axis.

AN N K
t // // // /NN Y // // // /
The figure to solve can be simplified considerably;
to fit it into a useful form the proper slopes are no
longer used and the picture is not to scale.

t

The intersection of the red line and the black light-

line is

=

The intersection of the green line and the black

light line is
(_8) 8)

The ratio is 18.

Problem 2.(b) pts
Clearly indicated graph or related equa- | 0.4

tions

Alice’s gifts correct slope (5/4) 0.2

Formula for vagaition *0.5
each mistake -0.3

Speed v, of Bob’s gift in A (35/37) *0.5
must have correct formula

Bob’s gifts correct slope (-37/35) 0.2

Light-like line drawn 0.2

Alice gift released Aty before Origin 0.2

Bob gift arrive At; before Origin 0.2

Intersection of Bob gift and light like line 0.3

Find intersection in Alice Frame 0.5

Intersection of Alice gift and light like line | 0.3

Find intersection in Alice Frame 0.5

symbolic ratio 0.5

each mistake -0.2

correct numerical result (18) 0.5

must have correct formula

Important Notes for marking Problem 2 b)

1. For the two starred (*) quantities above: If this
is the first use of the relativistic velocity addition
formula, then mark as shown. If the relativistic
velocity addition was was used to answer Part a),
then these points are only awarded for a student
who has reasonably demonstrated how they need
to use the relative velocity to solve Part b). An
appropriate figure can be sufficient. In this case,
they do not need to write the equations twice.

Solution using ict-diagrams

In the ict-diagram shown in the figure, the red co-
ordinate system represents the Bob’s frame of ref-
erence, the blue represents the Alice’s frame, and
the black represents the gifts’ frame. We know that
tana = £ = —3i and tan B = £ = -%i. Therefore,

tana+tanf 140,

tany =tan(a+pf) = ———— = ——1.
Y @+h) 1-tanatanf 148

We can express sinus and cosine in terms of tangent

to obtain cosa = 2, sina = -3i, cos B = 3, sinB = —3i,

cosy = 37, siny = -33i. Events A and B represent the

launching of two consecutive gifts, so the segment

AB is of length icz.
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ict

A

& Bob’s frame T
iR Alicy:
20 m;

Part a)1 The distance between two gifts launched

by Alice in the Bob’s frame of reference is labeled L

in the figure. From the sine theorem for the triangle
412

ABC we obtain L = ictsin B/cosy = rc3 22 = Lz

Part a)2 From the sine theorem for the triangle

ABD we obtain 7/ = 7sin B/siny = T%% = %CT-

Part b) We use the same reference frames and a di-
agram using the same color-coding. Additionally, the
diagram shows the gifts sent by Bob in green, and the
light ray arriving currently to Alice’s eye in purple.
The gifts seen by Alice are marked as coloured cir-
cles: the ones sent by herself are grey, and the ones
sent by Bob are green. Since the gits are launched
by Bob and Alice at the same frequency, the ratio of
the number of grey gifts to the number of green gifts
seen currently is equal to AP/RQ.

From the figure we can easily express AP = AM+NP;
using the sine for the triangle AMN theorem we ob-
tain AM = lcosy/sin B = 3lil; here, | denotes the dis-
tance to Alice now in Bob’s frame of reference. Since
light travels with speed ¢, we know that QN = iL;
the sine theorem for the triangle MPS yields MP =
MSsiny/sin p = QNsiny/sin B = i3l so that AP = i%2l =
i31. One can easily see that RQ = RN -QN = I/tan f—il =
izl. Bringing all together, the ratio of the number of
gifts is AP/RQ = 31 = 18.
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T3: Fabry-Pérot interferometer - Solu-
tion

Throughout these solutions, we use a Cartesian coor-
dinate system aligned so that the x axis points along
the normal to the mirrors. Let one mirror be posi-
tioned at x = 0 and the other at x = L, and suppose
the beam approaches the interferometer from the
negative-x direction. Let regions I, II and III be de-
fined by x < 0, 0 < x < L and x < L respectively. Note
that the mirrors are assumed thin for convenience
here, but this does not change the answers.

Solution 1

Part a Where the laser beam meets the first mirror
of the interferometer, some light is reflected back to-
wards the laser and the rest is transmitted into the
space between the mirrors (region II). This transmit-
ted light bounces back and forth between the mir-
rors. With every reflection, some light is transmit-
ted and leaves the interferometer. To find the com-
plex amplitude of the wave returning to the laser,
we need to sum the complex amplitudes of the wave
that reflects immediately (without ever entering the
interferometer), as well as those of the waves that
bounced back and forth once, twice, thrice, etc.

Each region therefore contains a superposition of
infinitely many waves. Crucially, a superposition of
any number of sinusoidal waves with the same fre-
quency, wavelength and propagation direction can
be represented by a single sinusoidal wave with the
same frequency, wavelength and propagation direc-
tion. Therefore, the electric field due to the waves in
regions I, IT and III must take the following form.

Region I: E(x,t) = Aell-on)
Region II: E(x,t) = Bl 4 cei(-kx-0t)
Region III: E(x,t) = Deltkx-ot)

In region I, we have a travelling wave moving in
the positive x direction with wavenumber k, angu-
lar frequency w and amplitude A. The condition that
there is no back-reflected beam means there is no
oppositely-propagating wave in region I. In region
II, the electric field is a sum of two waves propagat-
ing in either direction, which we give complex ampli-
tudes B and C. Finally, in region III, there is only a
wave propagating in the positive-x direction, which
we give complex amplitude D.

Let us introduce an amplitude reflection coeffi-
cient r and transmission coefficient ¢ for the mirrors.
These coefficients, which may be complex, are char-
acteristic of the mirrors. The ratio between the com-
plex amplitude of the reflected wave and the incident
wave is r, while the ratio between the complex ampli-
tude of the transmitted wave and the incident wave is
t. We are interested in ¢, which is the relative phase
between the complex numbers r and t.

Let us work out how the waves on either side of
the first mirror (in regions I and II) are related. In
region II, the forward-propagating wave is a result of

the transmitted part of the incident wave in region I,
and the reflected part of the backwards-propagating
wave in region II. Therefore,

B=tA+rC. (12)

Similarly, for the backwards-propagating wave in re-
gion I to vanish, the sum of the reflected part of
the incident wave and the transmitted part of the
backwards-propagating wave in region II must be
Zero:

0=rA+tC. (13)

Furthermore, applying similar reasoning at the sec-
ond mirror, using the complex amplitudes evaluated
at x =1L, leads to

DelkL — B ekl

Ce— KL — ppelkL

(14)
(15)

If r and t are given, along with the amplitude of the
initial wave A, equations (12)-(15) contain four un-
knowns: B, C, D and k. We find

~2KL _ 2 _ 2

e r (16)

This relation tell us the argument of the complex
number r? —t?; it must be —2kL. It also provides a con-
straint on the magnitude of this complex number; we
must have

(17)

This is a condition that r and t must satisfy in order
for the setup in the question, with no back-reflected
light from the interferometer, to be realizable.

With lossless mirrors, there is one additional con-
straint that r and t must satisfy. When a wave passes
through one of these mirrors, the incident power
must equal the sum of the reflected and transmit-
ted powers. Since every wave in the problem has
the same speed, the power carried by them is pro-
portional the their amplitude squared, which means
it is proportional to the modulus squared of the com-
plex amplitude. Therefore, conservation of energy
requires

-t =1.

2 +t>=1. (18)

Together, (17) and (18) imply that r and t cannot both
be real; there must be some phase shift between the
transmitted and reflected light.

Partb Using conditions (17) and (18), we can show
that the magnitude of ¢ is 90°. Here are two ways we
could do this.

First, we could square both conditions and sub-
tract:

|r2 _ t2|2 — |r|4 + |t|4 _ r2t*2 _ r*ZtZ =1
(rl?+1e1%? = Ir[* + [e|* = rrP[e)* =1
= 2/r)|t)? = r?t? + 2 .

Here, an asterisk denotes complex conjugation. This
is equivalent to (rt* +r*t)> =1 or
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This says that r/t is purely imaginary, so r and t must
have arguments that differ by +90°.

Alternatively, we could let a = r? and b = t?, so that
(17) and (18) read

la-b| =1
la| +|b|=1.

Using O to denote the origin and A and B, respec-
tively, to denote the points a and b in the complex
plane, consider the triangle OAB. The first condition
above implies that the length of side ABis 1. The sec-
ond implies that the sum of the lengths OA and OB
is also 1. Thus, the points O, A and B must actually
be collinear, with O in between A and B. So, b and
a have arguments that differ by 180°. Since a and b
have twice the arguments of r and t (respectively),
this means r and t must have arguments that differ
by +90°.

Part ¢ When the laser is rapidly switched off, after
the amount of time it takes light to travel from the
laser to the first mirror, the incident wave will be re-
moved.

Since |t| <« |r|, the amplitudes |B| and |C| are very
large. Furthermore, the difference between them is
small. Physically, the interferometer contains a large
amount of electromagnetic energy in two waves of
roughly equal intensity, propagating in either direc-
tion. This means, when this stored energy is re-
leased from the interferometer, the release will be
very nearly symmetrical. Approximately the same
amount of energy will be released in either direction.
So, the energy contained in the pulse that propagates
towards the laser is must be about half of the stored
initial energy.

To find the stored energy, suppose the power
contained in each wave (forwards- and backwards-
propagating) in region II is P’. The power transmit-
ting through the mirrors to leave the interferome-
ter is (1 - R)P’. Since this transmitted wave must
perfectly cancel out the wave that reflects from the
first mirror, which has power Rp ~ P, we must have
P’ ~ P/(1 - R). This means the initial energy stored

inside the interferometer is
2 LP
“1-R ¢

7

since the energy of the two waves travelling in either
direction simply adds. Therefore, the energy in the
pulse that returns to the laser is

1 LP
“"1-R ¢

Part d There are at least two ways of doing this
part; see Solution 2 below for a second approach.

The stored energy is initially given by (19). The
Poynting flux out of the interferometer at the mo-
ment when the incoming beam has just switched off
all the way to the surface of the first mirror is roughly

au (1-R)c
—=-2p=-""""7y

at r (19)

since the amplitudes of the waves propagating away
from the interferometer in regions I and III are both
roughly |A|]. We can assume that the stored energy
decays exponentially: if the field inside the device re-
duces by a certain factor, then the amplitude of the
waves just outside will have reduced by the same fac-
tor. So, the ratio between the stored energy inside
and the outwards Poynting flux is roughly constant.
Finding the time constant T so that U « e~!/T satisfies

(19) leads to
1 L

1-Rc

Since this is an estimate, and since the exact numer-
ical prefactor depends on whether we chose to use
the time constant for the decay in amplitude or en-
ergy, students can have any order-unity prefactor.
Since the combination L/c can be deduced by dimen-
sional analysis, the marks should be awarded for get-
ting the correct dependence on R on.

T

Solution 2

Part a It is possible to solve this problem by sum-
ming up an infinite series of complex amplitudes cor-
responding to the light waves that are reflected once,
twice, thrice, etc. from the mirror.

Let us focus on the backwards-propagating wave
in region I, which must vanish. In steady state, be-
fore the laser is switched off, let the amplitude of the
incident beam at x = 0 be A. Then, introducing ampli-
tude reflection coefficients r and t as in Solution #1,
the amplitude of the backwards-propagating beam is

rA[1 + t?(e2KL 4 2kl | p4eBIkL o~ h]

The first term represents the light that is reflected
immediately off the first mirror (factor r, without ev-
ery entering region II. The remaining terms repre-
sent light that transmits through the first mirror (one
factor t), propagates from x = 0 to x = L and back
some number N of times (factor e?¥*L due to the prop-
agation and r?¥-! for the correct number of reflec-
tions) and transmits through the first mirror again
(second factor of t. Summing the geometric series,
the backwards-propagating amplitude is

tZeZikL

rA (1 + m) =0.

Rearranging leads to the same condition (16) as in
Solution #1. The rest of the solution, to conclude
that r and t meet at a right angle and that ¢t must have
a nonzero phase, can proceed as in Solution #1.

Part b As in Solution #1.

Part ¢ After the incident beam has switched off
all the way to the interferometer, the beam the is
reflected immediately off the first mirror switches
off. The other beams, corresponding to light that
bounces some number N of times between the mir-
rors, switches off slightly later. So, the backwards-
reflected beam at first becomes

rA[tZ(eZikL +r2eHkL | pAgBikL 4 )] =-rA.
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At x = 0, this is the amplitude of the backwards-
reflected beam for time At = 2L/c.

Then, the wave that reflects once before leaving
also switches off, after time At. The amplitude be-
comes
t2r2e4ikL

2 ,2ikL

rA[t?(rle®kl 4 pteSkL 4 )] =rA =rArfe

1 — r2@2ikL
for the next At. Then, the wave that is reflected three
times before leaving switches off, after time 2At. The
amplitude becomes

tZ r4 eGikL KL

rA[t?(r*e¥kl 4 )] =rA =rArte

and so on. After time nAt, the amplitude is
—rAr?e?"kl - The modulus decreases by a factor of
R every At. This can be argued without a geometric
series; each wave has reflected two more times that
the previous one, so should have an amplitude that
is a factor of R smaller.

The energy in the backwards-propagating pulse
is the sum of the energies during the first, second,
third, etc At interval. This is

|r|> 2LP 1 LP
1-|r|* ¢

At + |+ B +..) = ST

Part d Since the amplitude decays like

R" = e—nlogl/R — e—log(l/R)t/At

the energy decays like e~2198(1/R)t/At " The time con-
stant of this roughly-exponential decay in energy is

po_ M 1L
~ 2log(1/R)  1-Rc

for1-R« 1.

Solution 3

Part a Students might assume that the perpendicu-
lar electric field is continuous across each of the mir-
rors. While this is not the intended solution, since the
question tells us nothing about the internal workings
of the mirror, they should get credit for this. If the
electric field is continuous, then 1 +r = t. Combined
with |r|? +|t|*> = 1, if r and ¢ are real, these equations
can only be satisfied if (r,t) = (0,1) or (r,t) = (-1,0).
Since there is reflected and transmitted light in this
problem, r and t must be complex numbers with a
nonzero imaginary part.

Part b Using Pythagorus’s theorem, the angle be-
tween r and t must be +90° (see figure).

Part ¢ As in Solutions #2 and #3.
Part d As in Solutions #2 and #3.

Rey

Grading

Part a

Part T3.a): Using sinusoidal waves Pts.
understanding that some light is initially re- | 0.3
flected without entering the interferometer
understanding that light bounces back and | 0.3
forth between the mirrors

using one or two travelling waves in each re- | 0.4
gion

writing equations relating amplitudes via r | 0.5
and t

solving to obtain (16) 0.6
using [r?+[tj>=10rR+T =1 0.5
stating that this is a consequence of conser- | 0.2
vation of energy

indicating that the solutions r and t should be | 0.2
complex

Total on T3.a) 3.0
Part T3.a): Summing geometric series Pts.
understanding that some light is initially re- | 0.3
flected without entering the interferometer
understanding that light bounces back and | 0.3
forth between the mirrors

idea of superposition of complex amplitudes | 0.2
correctly including the effect on the ampli- | 0.5
tudes of reflection, transmission and propa-
gation

summing up complex amplitudes as a geo- | 0.4
metric series

obtaining (16) 0.4
using [r|? +[tf?=10rR+T =1 0.5
stating that this is a consequence of conser- | 0.2
vation of energy

understanding that the solutions r and ¢ | 0.2
should be complex

Total on T3.a) 3.0
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Part T3.a): Assuming 1+r=t Pts. |Part d
understanding that some light is initially re- | 0.3 §
flected withogt entering th(gI interferome?icer Part T3.d: Removing waves m . Pts.
understanding that light bounces back and | 0.3 Stated that energy reduces by factor R* each | 0.2
forth between the mirrors tlme a wave 1S removeFl i
using 1+r =t 0.7 Usmg the fact that this reduction occurs at | 0.4
justification using continuity of electric field | 0.8 intervals A,t .
or thin-mirror arguments Some valid mathematlcal argument from | 0.4
using |r?+[tj>=10rR+T =1 05 here that obtains the correct T when 1-R « 1
stating that this is a consequence of conser- | 0.2 Total on T3.d 1.0
vation of energy Part T3.d: Exponential decay m Pts.
understanding that the solutions r and ¢ | 0.2 Stated the decay is roughly exponential 0.2
should be complex State the outwards energy flux 0.4
Total on T3.a) 3.0 Use this to determine decay constant 0.4
Total on T3.d 1.0
Notes on T3.d): no marks for dimensional analysis to
Part b obtain the combination L/c. The numerical prefactor
is irrelevant provided it is order unity (e.g. In2 for
Part T3.b: Algebraic method Pis. half-life). Any equivalent form, assuming 1 -R « 1, is
— acceptable.
writing 90° 0.5
taking modulus of (16) to get a condition in- | 0.7
volving r and ¢ only
Solving with r, ¢, r* and ¢* to find that ris an | 0.8
imaginary number times ¢
Total on T3.b 2.0
Part T3.b: Geometric method Pts.
writing 90° 0.5
taking modulus of (16) to get a condition in- | 0.7
volving r and t only
using a geometric argument to show that r | 0.8
and t must make a right angle
Total on T3.b 2.0

Notes on T3.a) and T3.b): different conventions for

r and t (eg using -r instead of r, different phase fac-

tors) are allowed.

Part c

Part T3.c: Destructive interference Pts.
|B| and |C| are the same if |t| < |r] 0.5

Applying symmetry to show 2E =U 1.0

Finding relation between P’ and P 1.5

Correct value for U 0.5

Correct value for E 0.5

Total on T3.c 4.0
Part T3.c: Geometric series Pts.
Showing, perhaps just by reasoning, that the | 1.5

power propagating out through the first mir-

ror decreases by a factor R? every At

Multiplying by At to convert power or inten- | 0.5

sity to energy

Summing a geometric series to find the total | 1.5

energy E

Correct value for E 0.5

Total on T3.c 4.0




