
Experimental Problems Language: English
E1 – Deep Learning (10 pts)
Modern ANNs (artificial neural networks) are made
of billions of neurons. Each neuron transforms its in-
put(s) x1, x2,…, xn to an output y. First,

z = w1x1 + w2x2 + · · ·+ wnxn + b
is calculated, with real numbered weights wi and real
numbered bias b. Then an activation function is ap-
plied to z to produce the final output y(x1, x2, . . . ). In
the present problem you will investigate a physical
model of a neuron with the electric voltages x1 and
x2 as inputs, with the activation function being Aσ(z),
graphed below, where σ(z) = 1/(1+exp  (−z)) is called
sigmoid function.
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Equipment
Important! Do not switch off any power outlets.

(i) A box containing a voltage source, an elec-
tronic circuit that models the neuron, and two
potentiometers (the A-potentiometer and the B-
potentiometer). The electric terminals on the
box are denoted as follows:

1 Two electrically connected GND terminals:
the electrical ground serving as a common
negative terminal for +V, x1, x2, and y.

2 +V: the positive terminal of the voltage
source.

3 X1 and X2: the positive terminals of the
neuron input voltages x1 and x2, respec-
tively. The neuron output behaves unpre-
dictably if either of these terminals has
no input voltage.

4 Y: the positive output terminal. It behaves
like a real voltage source, consisting of an
ideal voltage source of voltage y and a series
output resistor Rout, and operates as shown
below.

X1

X2 Y
z(x) =w1x1+w2x2+b RoutAσ(z)

5 A1, A2, A3: terminals of the A-potentiometer.
6 B1, B2, B3: terminals of the B-potentiometer.
7 T: a terminal not to be used in this task.

(ii) Digital multimeter with two probe wires.
(iii) Wires with banana connectors. Two or more

wires could be connected to the same terminal
in the box by using the holes in the banana con-
nectors. Using the banana connectors with the
multimeter may form an unstable connection.
Use the alligator clamp if needed.

(iv) Graph paper. You can ask for more if needed.

Task 1 (0.5 pts)
Terminals A1, A2, and A3 are connected to the A-
potentiometer RP and an additional load resistor RL.

Which of the schemes below corresponds to the cir-
cuit in the box? Determine the resistances RL and
RP ; document the measurements made.

A1 A2 
RP RL

1
A3

A1 A2
RP

RL

2 A3

A1 A2 
RL RP

3
A3

Note The B-potentiometer is connected to termi-
nals B1, B2, B3 in exactly the same way with the
same resistances RL and RP , within manufacturing
tolerances.

Task 2 - (0.5 pts)
Sketch how the terminals have to be connected so
that the neuron input voltages can be varied with the
widest possible range.

Task 3 - (1.5 pts)
Devise (and document) a strategy allowing you to
find the combination of input voltages x1 and x2 that
maximizes the output voltage y with the least possi-
ble number of measurements, irrespectively of with
which set of input voltages you start the search. De-
termine this maximal voltage ymax that will be hence-
forth used as an approximation for the amplitude A,
and document your measurements.

Task 4 - (3.5 pts)
Determine the weights w1, w2 and the bias b. Describe
your measurements and document your data in a ta-
ble. Estimate w1, w2, and b by using a graphical ap-
proach.
Training involves optimizing the network weights to
achieve desired functionality. This allows ANNs to
approximate arbitrary functions. For each of the
following tasks you have to approximate a different
function of a single input voltage using the given
equipment. Make sure that the input and output that
you define are clearly marked in your circuits.

Task 5 - (1.5 pts)
Connect the terminal X1 directly to +V. Design
a circuit to approximate the function y5(x) =
Aσ (w2x/2 + b5), where x is the voltage applied to your
newly defined input terminal. Determine b5 theoreti-
cally. Implement the circuit, take measurements and
verify that your setup works as expected. Validate
the value of b5 from your data.

Task 6 - (2.5 pts)
a Determine the internal series output resistance

Rout of the Y terminal. (0.5 pts)
b Design and implement a circuit to approximate

the function y6(x) = A6 · σ(w2x + b) + B6, where
B6 = 1.48V. Determine A6 theoretically. Imple-
ment the circuit and verify experimentally that
your setup works as expected. Confirm the val-
ues of A6 and B6 from your data. (2.0 pts)
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E1- Solution

The term “neuron”has been chosen in analogy to
the cells of the nervous system, which transmit elec-
trochemical signals across the nerves (variable y) de-
pending on the integral stimulus (z) on their input ex-
tremities (variables xi). The theory behind the artifi-
cial neurons and artificial neural networks has been
developed in a close analogy to basic physical con-
cepts. In recognition of this fact, the Nobel Prize in
physics in 2024 was awarded to John J. Hopfield and
Geoffrey E. Hinton ”for foundational discoveries and
inventions that enable machine learning with artifi-
cial neural networks”. The artificial neurons could
also be real physical systems, which transform me-
chanical, electrical, or optical signals.

Task 1
The multimeter is connected in an ohmmeter mode
to the three possible pairs of output terminals of A-
potentiometer. By turning the knob of the poten-
tiometer we measure the maximum and minimum re-
sistance for each pair:

Terminals: Rmin(Ω) Rmax(Ω)
A1-A2 1000 1000
A1-A3 222 1222
A2-A3 222 1222
If the load resistor was connected to either A1 or

A2, then the Rmin for A1-A3 and A2-A3 pairs would
close to zero, in contrast to measurements. There-
fore the load resistor is connected between A3 and
the potentiometer slider. In this case, for either
of A1-A3 and A2-A3 pairs we have: Rmin = RL and
Rmax = RP +RL and

RL = 222Ω RP = 1000Ω

Task 1 Pts
A States or shows in a drawing that the

resistance between the three pairs of
terminals has been measured.

0.2

Results for the resistances:
B RP ≈ 1000Ω± 120Ω 0.1
C RL ≈ 220Ω± 6Ω 0.1
D Concludes that the resistor is con-

nected to terminal 3.
0.1

Total on Task 1 0.5

Task 2
The necessary connections are shown in Fig. 1.

Task 2 Pts
A Potentiometers are connected to X1

and X2
0.2

Correct connections to ground and sup-
ply

0.3

-0.1 per wrong connection
-0.2 fixed penalty for the specific case
that X1 / X2 are connected to A1/A2 and
V+ and GND on the remaining termi-
nals of the potentiometer. This setup
gives only limited variation of the input
voltage (0V - 2.67V)
-0.5 if only 2 terminals the potentiome-
ters are connected.
Total on Task 2 0.5

Y

GND+V

X2

X1

Figure 1: Correct Setup Task 2

Task 3
By turning the potentiometers’knobs one can es-
tablish that the input voltages change independently
between 0V and ≈ 3.25V (Note that due to the pro-
tection circuit inside the box, this voltage decreases
slightly with connected circuitry). Therefore, any
combination of input voltages could be mapped to
a point inside the shaded square area in the x1 − x2

plane, as shown in Fig 2. Points corresponding to a
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Figure 2: Task 3
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x1(V ) x2(V ) y(V )
0.00 0.00 2.30
3.15 0.00 1.15
3.15 3.15 2.56
0.00 3.15 2.73

Table 1: Output voltage at the vertices

constant output voltage y satisfy the equation:

w1x1 + w2x2 + b = const,

which defines a family of parallel straight lines, per-
pendicular to the vector w⃗ = (w1, w2) (see the dashed
lines in Fig. 2). It is clear that for any set of weights,
the maximum voltage ymax and the minimum voltage
ymin are always met at the vertices of the rectangle.
Therefore, only three corners need to be measured in
order to determine the maximum voltage ymax. First,
two corners are measured, which are next to each
other. Therefore, the maximum along the connecting
edge can be found. Using the corner with the higher
voltage, the other edge from that corner is followed
to a third corner. Consequently, the highest voltage
can be determined, as the fourth corner needs to be
lower than the third measured corner. Table 1 sum-
marizes the measurements of the output voltage at
the four vertices. The maximum of the output volt-
age is:

ymax = 2.73V
corresponding to the input voltages:

x1 = 0.00V; x2 = 3.15V.

Task 3 Pts
A Strategy that three measurements are

sufficient to obtain ymax

0.7

Penalty for four measurements -0.3
No points for more than four measure-
ments
Note that turning the knob for xi and
watching the change of y does count as
at least 2 measurements per xi. For so-
lutions where the knob is turned a little
for x1, then the other for x2, the conclu-
sion about the signs of the wi is made
and only then the input gets adjusted
to reach ymax, this counts as at least
5 measurements, which is awarded no
points here.

B Lower bound of measurements < 0.02V 0.1
C Upper bound of measurements > 3V 0.2

Note that to obtain these 0.1 + 0.2
points, the student must write its input
values for x1 and x2 down explicitly, or,
at least write that they are directly con-
nected to GND or +V if that is the case.

D Per measurement 0.1 up to 0.3 0.3
E Value for ymax = 2.73V ± 0.04V 0.2

Penalty for more than three significant
digits

-0.2

Penalty for only one significant digit -0.2
Total on Task 3 1.5

Task 4
The three parameters could be determined in two se-
ries of measurements of the output voltage by setting
each of the input voltages constant and changing the
other input voltage. The dependence of the output
voltage on x1 and x2 can be linearized by transform-
ing y to the auxiliary variable:

z = ln y

A− y
≈ ln  y

ymax − y
(1)

since:
z = w1x1 + w2x2 + b (2)

Measurements close to the maximum output voltage
should be avoided because of the large systematic er-
ror in calculated values of z when approximating in
equation (1) the unknown A with ymax. Therefore,
the suitable set of measurements is along the path
(0, 0)–(3, 0)–(3, 3)V in the x1, x2-plane. Tables 2 and 3
summarize the results of measurements along the
lines (0, 0)–(3, 0)V and (3, 0)–(3, 3)V respectively. The
values of the variable z calculated by means of (1)
are shown in the last column of the tables. Figure 3
shows the data in Table 2 in variables z and x1 with
the corresponding linear fit. The weight w1 corre-
sponds to the slope of the fitting line:

w1 =
∆z

∆x1
= −0.62V−1 (3)

Since x2 = 0.00V, the bias b could be estimated by
crossing point of the fitting line with the z-axis:

b = 1.67 (4)
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x1(V ) y(V ) z
0.00 2.31 1.68
0.26 2.24 1.50
0.59 2.15 1.29
0.83 2.08 1.15
1.09 2.00 0.99
1.32 1.92 0.85
1.72 1.76 0.59
1.98 1.65 0.41
2.20 1.57 0.29
2.53 1.44 0.10
2.88 1.29 -0.12
3.02 1.23 -0.21

Table 2: Measurements for x2 = 0.00V

x2(V ) y(V ) z
0.00 1.23 -0.21
0.22 1.38 0.01
0.51 1.56 0.28
0.81 1.74 0.55
1.06 1.88 0.78
1.37 2.04 1.07
1.75 2.21 1.43
1.99 2.30 1.65
2.22 2.38 1.89
2.53 2.47 2.21
2.74 2.52 2.44
3.02 2.57 2.72

Table 3: Measurements for x1 = 3.02V

The data for z and x2 in Table 3, and the correspond-
ing linear fit are shown in Figure 4. The slope of the
fitting line gives the weight w2:

w2 =
∆z

∆x2
= 0.96V−1 (5)

According to equation (2) the crossing point, –0, 22, of
the fitting line with z axis at x1 = 3.02V satisfies the
equation

−0.22 = w1x1 + b = −1.87 + b (6)

Therefore, we obtain a second estimate for the bias
b = 1.65. As a most likely estimate of b, the mean of
the b-values obtained from the two graphs should be
taken:

b = 1.66± 0.01 (7)

Task 4 Pts
A Linearizes the y − x dependence by

means of formulae (1) and (2) or equiv-
alent

0.4

No points are awarded for the following parts
B-Q if there is no documentation of a circuit
that is able to provide varying voltages to the
X1 and/or X2 terminals at all.
B Avoiding (0,3) corner (even without

explicit reasoning) but award points
only if two usable data-sets have been
recorded

0.3

Raw measurement values of y for vary-
ing x1

C Roughly linear distribution of x1 0.1
Number of Points ≤ 3 0

D 4-5 0.1
6-7 0.2
≥ 8 0.3
Raw measurement values of y for vary-
ing x2

E Roughly linear distribution of x2 0.1
Number of Points ≤ 3 0

F 4-5 0.1
6-7 0.2
≥ 8 0.3

G Conversion of y into z 0.2
Plot for z versus x1

H Size & Axes 0.2
I Values in plot 0.2
J Linear regression line (only if data is ac-

tually linear, which is not the case when
plotting y vs x1)

0.2

Plot for z versus x2

K Size & Axes 0.2
L Values in plot 0.2
M Linear regression line (only if data is ac-

tually linear, which is not the case when
plotting y vs x2)

0.2

N Value for w1 between −0.6V−1 and
−0.65V−1

0.2

O Value for w2 between 0.93V−1 and
1.01V−1

0.2

P Value for b between 1.64 and 1.70 0.2
Note that these boundaries are strict
and outside no points are awarded
here, even if they are close.

Q Overall penalty for significant digits
other than 2-3 (rare occasion only -0.2)

-0.4

Total on Task 4 3.5

Task 5

Since X1 is connected to +V, the input voltage x must
somehow be supplied through X2. Conveniently, the
neuron that we have to build in this task requires a
weight of w2/2, which we can effectively achieve by
reducing the input voltage on X2 by a factor of two.
For this, one of the potentiometers can be used to
halve the input voltage. To find the correct position,
the resistance between terminals 1-2 and 2-3 is mea-
sured while adjusting the knob. Due to the non-linear
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Figure 3: Graph of x1(V ) vs z for Task 4

Figure 4: Graph of x2(V ) vs z for Task 4

behavior of the potentiometer, the final position is
not the physical middle position. Alternatively, if a
voltage is applied to the potentiometer, this can be
tuned with the voltmeter function. The circuit for the
modified neuron is visible in Fig. 5.

For this circuit, the input voltage x is converted to
x2 via the following relation:

x2 =
1

2
x

Therefore, the intermediate function z becomes

z = w1U+V +
w2

2
x+ b.

This means that our new bias b5 is the constant part,
so

b5 = w1U+V + b ≈ −0.35.

Note that it is also possible and fully correct to con-
nect the other end of the potentiometer to +V in-
stead of the ground, which leads to the same effec-
tive weight but a different b5 of approximately 1.2.

X1

X2 Y

INPUT x

OUTPUT y
+V

GND

B3

B1 B2

Figure 5

x(V ) y(V ) z
0.00 1.13 -0.36
0.20 1.19 -0.27
0.40 1.25 -0.18
0.60 1.32 -0.08
0.80 1.39 0.02
1.00 1.46 0.12
1.20 1.51 0.20
1.40 1.58 0.30
1.60 1.63 0.38
1.80 1.69 0.47
2.00 1.77 0.59
2.20 1.82 0.67
2.40 1.87 0.75
2.56 1.93 0.86

Table 4

However, in this solution we only consider the case
shown in Fig. 5.
When the circuit is assembled, we can use the A-
potentiometer (connected to +V and GND) to supply
a variable voltage to the input of the new neuron.
This way, we can take a few measurements to con-
firm that our circuit behaves as desired, which leads
to the data in Tab. 4.

By linearization via the inverse activation function

z = −
(

ln A

y
− 1

)

we can plot z vs x and determine the effective weight
from the slope and the bias b5 from the intercept, see
Fig. 6.

Experimentally, we obtain b5 ≈ −0.36, which is close
to the theoretical value and an effective weight of
0.47V−1 ≈ w2/2. Since the linear fit is also in good
agreement with the data points, we have shown that
our circuit fulfils the expectations.
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Figure 6

Task 5 Pts
A Idea and drawing of circuit 0.3
B Theoretical derivation and calculation

of b5
0.2

partial credit for just the formula b5 =
w1U+V + b

0.1

No points are awarded for the following parts
C-I if the circuit used is no different than the one
used in task 4 or the only change is that X1 is
connected to +V, or if there is no documenta-
tion of a circuit that is able to provide varying
voltages here or in previous tasks.

Raw measurement values of y for vary-
ing x

C Usage of whole span for x 0.1
D Number of Points ≤ 2 0

3-4 0.1
≥ 5 0.2
Plot for z versus x

E Size & Axes 0.2
F Converted values in plot 0.2
G Linear regression line 0.2
H Comparison of b5 0.1
I Overall penalty for significant digits

other than 2-3
-0.2

Total on Task 5 1.5

Task 6

a

To determine the internal series output resistance
Rout, we have (at least) two options. We can either
set the output of the neuron to a known value and
connect the Y terminal via an ampere-meter directly
to ground - essentially shorting it - and dividing the
neuron output voltage by the measured short-circuit
current.
Alternatively, we can set the neuron to a known open-
circuit voltage Uopen by connecting +V to X2, connect
Y to ground via the potentiometer resistance RP and
measure the voltage drop UP over it. This is the safer
version, in case we do not know how small Rout is and
we prevent dangerous currents. We measure:

Uopen ≈ 2.71V, UP ≈ 2.11V

This results in:

Rout =

(
Uopen
UP

− 1

)
RP ≈ 284Ω

b
We want our circuit to approximate the function

y6(x) = A6 · σ(w2x+ b) +B6

with B6 = 1.48V. First, it is obvious that w1 does not
influence y6, and therefore terminal X1 needs to be
connected to ground. To increase the voltage of ter-
minal Y, we need to add a voltage divider in the form
of a potentiometer between terminal Y and the sup-
ply voltage, as shown in Fig. 7.

X1

X2

Y

INPUT x

OUTPUT y

GND

B1

B2
+V

B3

Figure 7

The output voltage can be expressed by

y = (1− η)Aσ(w2x+ b) + ηU+V ,

where η is the voltage division ratio of the RP and
Rout combined:

η =
Rout +Ra

Rout +RP

with Ra being the fraction of RP that lies in between
B1 and B3. With this, we can use the given value of
B6 to get η:

η =
B6

U+V
≈ 0.458 ⇒ Ra

RP
=

1

RP

(
Rout +RP

2
−Rout

)
≈ 0.389

And thus we gain a theoretical value for A6:

A6 = A(1− η) = A

(
1− B6

U+V

)
≈ 1.5V. (8)

To experimentally verify that our neuron behaves
as expected, once again, the remaining potentiome-
ter can be used to apply different input voltages x and
the output y is recorded. The multimeter can be used
to set the internal B-potentiometer to the right ratio
- do not forget to measure in the ohmmeter mode
only if there are no currents running through the po-
tentiometer. To linearize the data, we rescale the x-
values by applying the sigmoid function σ(z(x)) to it.
The resulting numerical values can be seen in Tab. 5.

If one plots σ(w2x+b) against x, one expects a linear
function with slope A6 and intercept B6. The raw data
is shown in Fig. 8 and the linear fit in Fig. 9.
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x(V ) y(V ) Aσ(w2x+ b)(V )
0.00 2.73 1.38
0.15 2.76 1.48
0.30 2.78 1.58
0.45 2.80 1.68
0.60 2.83 1.78
0.75 2.85 1.87
0.90 2.86 1.96
1.20 2.89 2.11
1.50 2.91 2.25
1.80 2.92 2.36
2.10 2.94 2.45
2.40 2.95 2.52
2.70 2.96 2.58
3.00 2.96 2.62
3.23 2.97 2.65

Table 5

Figure 8

From the fit, we read A6 ≈ 1.53 and B6 ≈ 1.45, which
is in agreement with our theoretical values up to 2
significant digits. The fact that the linear fit function
agrees well with the data points further confirms that
the neuron behaves as intended.

Figure 9

Task 6 Pts
A Idea for output resistance 0.2
B Measurements 0.2
C Rout = 284Ω± 15Ω 0.1
D Idea and drawing of circuit 0.5
No points are awarded for the following parts
E-L if the circuit used is the same as used in task
4 or task 5 or the only change is that X1 is con-
nected to GND or if there is no documentation
of a circuit that is able to provide varying volt-
ages here or in previous tasks.
E Derivation of A6 (8) 0.4

Penalty for neglecting Rout -0.2
Raw measurement values of y6 for vary-
ing x

F Usage of whole span for x 0.1
G Number of Points <= 2 0

3-4 0.1
>= 5 0.2
Plot for y6 versus σ(z(x))

H Size & Axes 0.2
I Converted values in plot 0.2
J Linear regression line 0.2
K Alignment of measured and theoretical

values
0.2

L Overall penalty for significant digits
other than 2-3

-0.2

Total on Task 6 2.5
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E2 – Hidden pattern (10 pts)
You are given a flat semi-transparent foil with a
micro-pattern printed on its surface that is invisible
to the naked eye. The pattern consists of a large
number of identical sinusoids with amplitude A, run-
ning horizontally with spatial period Λ, and verti-
cally shifted by distance d relative to each other, as
schematically shown in Fig. 10. Under a microscope,
one can see that the printed pattern is composed of
strictly horizontal line segments, each vertically dis-
placed from its neighbours by a constant pitch s, as
shown in Fig. 11.

2A

d

Λ

Figure 10: Pattern (not to scale)

d s

Figure 11: Pattern as seen under microscope.

Equipment (see also Fig. 12)
A Semi-transparent foil with a micro-pattern

printed on its surface.
B Laser diode with wavelength λ = (654± 5)nm. The

laser diode can be focused to the desired distance
by rotating the end cap with a lens inside.
Warning: Do not completely unscrew the end
cap! Inside, there is an oriented lens and a spring.
No replacement laser will be given if damaged or
disassembled.

C Two 90-degree L-shaped steel planks serving as
stands for the foil and the laser diode. The foil can
be fixed to one of the planks using the provided
small clips. The laser diode can be mounted to the
other plank with a larger coloured clip or with the
provided rubber band.

D A sheet of paper with a printed goniometer – a po-
lar coordinate frame with 1-mm radial steps and

A

C

C

J

B

H

H

A

C

C

J

B

H

H

Figure 12: Components A, B, C, H, and J arranged
for the experiment.

angular divisions in degrees.
E A screen: the large surface of the box containing

the experimental materials. Empty the box and
place it on the desk with its large surface vertical.

F Ruler.
G Measuring tape.
H Adhesive tape attached to the ruler. Use pieces

of the tape to fix the printed goniometer to the
screen or to secure components to the table. You
can ask for more tape if needed.

I Millimeter graph paper.
J An 80mm paper measuring scale with diagonal

reference lines that allow you to measure frac-
tions of the main scale divisions, accurate to
±0.1mm.

Hint: In all of your measurements you are free to
draw or put marks on the screen.
Important: Assume that the surface of the experi-
mental desk is flat, and the screen is strictly perpen-
dicular to the desk.

Tasks (10.0 pts)
Determine as precisely as possible:

a The sinusoid period Λ. (2 pts)
b The vertical offset d of the neighbouring sinusoids

(2 pts)
c The sinusoid amplitude A (3 pts)
d The step height s (3 pts)

In all of the tasks you are expected to:
1. sketch a setup and/or rationalize a method for

measuring the corresponding quantities;
2. report your measurements and calculations in a

tabular form;
3. estimate the desired quantities and their uncer-

tainties graphically, whenever reasonable.
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E2 - Solution

Task a.
The light transmitted through the film forms a pri-
mary and secondary diffraction pattern as displayed
in Fig. 13.

Figure 13: Photo of the diffraction pattern with the
primary and secondary pattern marked.

The secondary diffraction pattern is only required
for task d. For the primary diffraction pattern, a num-
ber of bright interference maxima lying on the same
line is visible. This fact implies that locally, within
the cross section of the laser spot, the printed lines
on the film surface form a diffraction grating con-
sisting of a large number of practically linear par-
allel fringes. Therefore, the diffraction maxima are
situated on a straight line, perpendicular to the tan-
gent to the illuminated sinusoids, like illustrated in
Fig. 14.

By scanning the laser in a horizontal direction, the
diffraction pattern will tilt according to the line slope
in the illuminated spot. The pattern will be verti-
cal when the laser incidents on crests or valleys of
the illuminated sinusoids. Therefore, the distance
between two consecutive vertical positions of the
diffraction pattern is l = Λ/2, hence Λ = 2l.

The experimental setup is designed as follows: As
a first step, we fix the foil with two clips to the L-
shaped stand and align it carefully vertically. The
goniometer is glued to the screen with the 0◦-division
pointing vertically. Next we fix the laser to another
L-shaped stand and align it so that the beam hits the
centre of the goniometer. We place the screen (go-
niometer) as far as possible from the foil to achieve
larger displacements of the maxima and hence, a bet-
ter precision, also see Fig. 15. The stand with the
foil is being displaced in small steps across the laser
beam, and the angle of inclination θ of the diffraction
pattern is being measured as function of the distance
x between the laser spot and the edge of the film.

Further we put the ruler on the diagonal scale so

θ

θ

!"#$%#!

#&'(")

!

"

#$

Figure 14: Qualitative sketch of interference pat-
tern.

Figure 15: Setup with optimized usage of the table
space for improved precision.

that one of its edges is aligned with the alignment
line on the scale; we’ll be sliding the L-shaped stand
with the foil along the edge of the ruler. That way
we can focus on observing how the diffraction max-
ima shift while we slide the stand, without a need for
sharing our attention between the diffraction max-
ima and alignment of the stand. A sample data set
is recorded in the first two columns of Table 7, while
the corresponding graph of θ vs. x is shown in Fig. 16.

In what follows we’ll be outlining two possible ap-
proaches for achieving precise experimental results
of the quantities asked in this problem: approach
A: graphical; approach B: carefully scanning the
diffraction pattern around critical configurations.
Approach A. Points x1 and x2 in Fig. 16 corre-

sponding to θ = 0◦, i.e. consecutive crest and valley
of the sinusoid, can be obtained by linear fits of the
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Figure 16: Graph of θ vs. x.

four points nearest to the zero-crossing points:

x1 = (10.0± 0.5)mm x2 = (40.5± 0.5)mm .

Therefore, l = x2 − x1 = 30.5mm with uncertainty δl =√
δx2

1 + δx2
2 = 0.7mm, and

Λ = (61.0± 1.4)mm .

Approach B. Alternatively, we move the stand
with the foil so that the diffraction maxima align
along a vertical line and take the reading x1 from the
diagonal scale. Next we slide the stand along the
rule to find the other position where the diffraction
maxima align along a vertical line and take the cor-
responding reading x2. We can see that achieving a
vertical alignment is not easy and incurs an uncer-
tainty, so we need to repeat the measurements. The
measurement data are shown in the table below.

No x1/mm x2/mm
1 77.8 47.3
2 78.0 47.4
3 77.7 47.5
4 77.6 47.3
5 77.7 47.4

avg 77.76 47.38

According to this we calculate

Λ = 2(x2 − x1) = 60.8mm .

and ∆Λ = 0.16mm

Task E2.a Pts
A Idea for linking the changing tilt of the

primary diffraction pattern to phase of
sinusoid.

0.3

Partial credit if full Λ is measured be-
tween consecutive vertical positions of
the diffraction pattern

0.1

B Sketch of the correct setup (shifting the
laser laterally to scan foil position and
screen behind)

0.2

partial credit if Λ/2 is measured be-
tween two ”maximal” inclinations

0.1

C Using the diagonal scale for measuring
x (data recorded with the precision of
0.1mm)

0.2

If Approach A is chosen:
D Usage of at least half the sinusoid pe-

riod (30.5mm) for variation of x
0.2

E Number of recorded points:
≥ 6 but < 10 points recorded 0.2
≥ 10 points recorded 0.3
If Approach B is chosen:

E! Number of measurements n for both x1

and x2: 0.1(n− 2) , in total up to
0.3

D! Quality of data: standard deviation be-
tween individual measurements of |x1−
x2| ≤ 0.2mm

0.2

|x1 − x2| ≤ 0.3mm 0.1
F Distance between the foil and the

screen at least 60cm
0.2

G Partial points for value of Λ between
58mm and 64mm

0.1

Partial points for value of Λ between
59.5mm and 62.5mm

0.2

between 60mm and 62mm 0.3
Full points: between 60.5mm and
61.5mm

0.4

H Suitable error estimation 0.2
If the error estimation is based on a
reasonable approach, but the numer-
ical estimates of the direct measure-
ment uncertainties are clearly under- or
overestimated

0.1

If the error estimation method itself is
flawed or not provided

0

Total on Task E2.a 2.0

Task b.
Approach A. It can be easily deduced from Fig. 14
that the period of the diffraction grating, perpendic-
ularly to the printed lines, is

d′ = dcos θ .

The angle to the n-th order diffraction maximum is:

φ = sin−1  
(

nλ

dcos θ

)
.

The distance between the 0-th and the n-th maxima
on the screen is

Rn = L tanφ≈ nλL

dcos θ , (9)
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where L = 74.6cm is the distance between the film
and the screen, and sinφ ≈ tan  φ since involved an-
gles are much smaller than 1 rad. Therefore, if we
choose a specific order maximum and measure the
distance R at different points on the screen, i.e. for
different angles θ, the distance d can be calculated
as a sample average:

d = nλL

⟨
1

R cos θ

⟩

While the uncertainty –as a sample standard devia-
tion of d. Since the 0-th order could be slightly offset
from the goniometer center, we measure the corre-
sponding distances between the two symmetric, n-th
and –n-th, maxima: Dn = Rn +R−n and calculate

d = 2λL

⟨
1

Dn cos θ

⟩

The last four columns of Table 7 summarize the mea-
sured distances and calculated value of d for the 5-th
maximum. By averaging the d values, we obtain:

d = (60.1± 0.5)µm .

However, we need to keep in mind the uncertainty of
the laser wave length. Adding the relative errors of
the measurement data and laser wavelength accord-
ing to the Pythagorean rule (applicable for uncorre-
lated error sources), we obtain

d = (60.1± 0.7)µm .

We note that if we use the data at θ = 0◦, the diffrac-
tion maxima yield directly the line distance d accord-
ing to

d = 2λ/ sinαn = 2λ
√

L2 +D2
n/4/Dn. (10)

Approach B. Alternatively to using many data
points for different θ, we can choose the positions
x = x1 or x = x2 found in the previous task since
they are the lateraly points offering the highest pre-
cision. Analogously to approach A, we determine the
distance between the symmetric diffraction maxima
of highest observable order, n = 6, to achieve the
highest possible precision. The best way to deter-
mine the distance Dn is by marking dots onto the
screen at the positions of the maxima, and measure
the distance between the dots by ruler (to keep the
goniometer clean, one can attach another sheet of
paper to the stand). Since a single measurement will
be very precise if done carefully, repeated measure-
ments are not required for this task. The result of
the measurement is D6 = 105.5mm with L = 810mm,
resulting in d = 59.7µm. Estimated error is ±0.7µm.

Task E2.b Pts
A Understanding that the primary diffrac-

tion pattern is created by the distance
of the sinusoids to each other

0.2

B Using ≥ 5, ≥ 7, ≥ 10 (θ,Dn) data points
to receive 0.1, 0.2, 0.4 pts. (approach
A) or chossing to record data at x = x1

or x = x2 (approach B)

0.4

if vertical interference pattern is used
without an explanation (approach B)

0.2

C Expression equivalent to Eq. 10 0.3
simplified Eq. 10 (without Pythagorean
correction)

0.2

D Usage of at least a total span of 6+6=12
diffraction orders for measurement of ϕ

0.3

Total span from 9 to 11 diffraction or-
ders for measurement of ϕ

0.2

Total span from 6 to 8 diffraction orders
for measurement of ϕ

0.1

If measurement data is not consistent
with real experiment

0

E Distance to the screen at least L ≥ 70cm 0.3
Partial credit for L between 40cm and
70cm

0.2

L between 20cm and 40cm 0.1
F Partial points for value of d between

58µm and 62µm
0.1

between 58.5µm and 61.5µm 0.2
Full points for value of d between 59µm
and 61µm

0.3

G Suitable error estimation 0.2
If the error estimation is based on a
reasonable approach, but the numer-
ical estimates of the direct measure-
ment uncertainties are clearly under- or
overestimated

0.1

If the error estimation method itself is
flawed or not provided

0

Total on Task E2.b 2.0

Task c.
Approach A: The point where a sinusoid crosses the
x-axis corresponds to a maximum angle of inclination
of the diffraction pattern θ = (27± 1)◦ and can be ob-
tained as:

x0 =
x1 + x2

2
= (25.3± 0.7)mm .

The sinusoid equation can be written as

y = A sin  (k(x− x0))

where:
k =

2π

Λ
= (0.103± 0.002)mm−1

is the sinusoid wavevector. Since tan θ = dy/dx, we
obtain:

tan θ = kAcos  (k(x− x0)) .

Therefore, the auxiliary variables z = cos(k(x − x0))
and t = tan θ are related by a linear dependence

t = kAz≡mz (11)
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and the amplitude of the sinusoid can be calculated
by determining the slope coefficient m:

A =
m

k
.

Calculated values of t and z are shown in the third
and fourth column of Table 7, and the corresponding
graph is shown in Fig. 17.

!"#$ !$#% !$#& !$#' !$#( $#$ $#( $#' $#& $#% "#$
!$#&

!$#'

!$#(

$#$

$#(

$#'

$#&

)*+
*),
-*
θ

!*+*./01234!4$56

Figure 17: Graph of tan θ vs. cos(k(x− x0)).

The slope coefficient is

m = (0.52± 0.01) .

Therefore:
A = (5.0± 0.2)mm .

Approach B. The amplitude of the sinusoids on the
foil can be determined if we know the maximal slope
the printed lines maxx

dy
dx = Ak as we already know

the wave vector k = 2π/Λ. We notice that the diffrac-
tion maxima lay on a line perpendicular to the lines
on the foil at the point where the laser beam passes
it, hence we can find the maximal slope of the lines
as the maximal angle θ that the array of diffraction
maxima form with the vertical axis,

max
x

dy
dx = max tan θ = tan θmax (12)

This is done easily by using the same setup as in part
A, by sliding the stand of the foil along the edge of
the ruler and observing how the maxima move on the
screen. As a result we obtain θmax = (27.5± 0.3)◦, cor-
responding to

A = Λ tan θmax/2π = (5.05± 0.06)mm .

Task E2.c Pts
A Recognition that the slope of the si-

nusoid is perpendicular to the primary
diffraction pattern

0.3

B Idea to use that the first derivative of
the sinusoid is tan θ

0.3

C Correct linearization equivalent to Eq.
11 (approach A) or deriving Eq. (12)
(approach B)

0.5

If approach A has been chosen
D Computing the auxiliary (linearized)

value-pairs (z and t) for
≤ 5 points 0.0
6-9 points 0.2
≥ 10 points 0.4
Plot for t versus z

E Suitable graphical evaluation to find A
(approach A)

0.2

If approach B has been chosen
E! Idea of using the maximal inclination

point
0.2

D! Obtaining θmax
Partial points within θmax = (27.5± 1.0)◦ 0.2
Full points within θmax = (27.5± 0.5)◦ 0.4

F Distance to the screen at least L ≥ 70cm 0.3
Partial credit for L between 40cm and
70cm

0.2

L between 20cm and 40cm 0.1
G Partial points for value of A between

4.5mm and 5.5mm
0.2

Partial points for value of A between
4.7mm and 5.3mm

0.5

Full points for value of A between
4.8mm and 5.2mm

0.8

H Suitable error estimation 0.2
If the error estimation is based on a
reasonable approach, but the numer-
ical estimates of the direct measure-
ment uncertainties are clearly under- or
overestimated

0.1

If the error estimation method itself is
flawed or not provided

0

Total on Task E2.c 3.0

Task d.
The vertical slabs that come from the printing tech-
nique lead to the secondary diffraction pattern as
can be seen from the photo in Fig. 13. In this task,
there also exist two different approaches that differ
in the way the diffraction vectors are modelled but
lead to the same and valid result.

Approach A: In the model of Huygen’s elementary
waves, the elementary wave sources along each of
the vertical edges, as shown in thick red dotted lines
in Fig. 18, will create wavefronts that propagate to-
wards the screen and create interference pattern.

These edges have a regular distance g of each other
that depends on θ, specifically:

g =
s

tan θ
.
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g
s

Figure 18: Sketch for explanation of the relevant
quantities for secondary diffraction pattern

θ tan(θ) R+1 + R−1

(cm)
s (µm)

27.8 0.527 4.75 1.08E-05
25.7 0.481 4.65 1.01E-05
24.5 0.456 4.50 9.88E-06
24.7 0.460 4.60 9.76E-06
21.8 0.400 3.90 1.00E-05
18.1 0.327 3.00 1.06E-05

Table 6: Measurements of the secondary diffraction
order distances for different angles θ

From the diffraction angle ω of the maxima of the
secondary diffraction pattern, g can be expressed via:

λ

g
= sinω ≈ ω .

Experimentally, we can obtain ω via

ω ≈ tanω =
R+ +R−

2L
,

where R+ + R− is the distance between the two
diffraction orders visible (left and right from the cen-
tre) in the secondary pattern. We can combine this
knowledge to obtain g:

g =
2Lλ

R+ +R−

Thus, we get s via the trigonometric relation

s = g tan θ =
2Lλ tan θ

R+ +R−
(13)

It is important to notice that the secondary pattern
can only be observed distinctly for large θ since only
in these regions, the slope of the sinusoid barely
changes, which in turn means that θ and the result-
ing diffraction angle ω is rather constant. In Tab.
6, the recorded measurement points for the same
L = 74.6cm is shown.

A graphical evaluation has no benefit over comput-
ing the average of the point-wise results here, so we
use the average of s as the result and its standard
deviation as the error estimate. Thus, we get:

s ≈ (10.2± 0.4)µm .

Approach B: Alternatively the characteristic diffrac-
tion length is the hypotenuse of length h of the blue

triangle shown in Fig. 18, which is h = s/ sin θ. Sub-
sequently, the diffraction angle is

ω ≈ sinω =
λ

h
=

R̃+ + R̃−

2L
,

Where R̃+ and R̃− are the positions of the secondary
diffraction pattern orthogonal to the primary pat-
tern. Thus, the formula for s becomes

s =
2Lλ sin θ

R̃+ + R̃−
, (14)

which leads to the same outcome as in approach A
since R̃+ = cos θR+ and R̃− = cos θR−.

Task E2.d Pts
A Linking the horizontal line segments of

the discrete printer resolution to the
secondary diffraction pattern

0.3

B Understanding that the diffraction an-
gle ω depends on θ

0.3

C Deriving the final formula to compute s
as in Eq. 13, or, alternatively Eq. 14

0.4

D Sketching or describing a suitable
setup and procedure to measure the
relevant quantities to determine s

0.3

E Using both the plus and minus diffrac-
tion order for improved measurement
precision

0.2

F Method of measuring R+ and R−: Mark-
ing the secondary diffraction maxima
with pen on screen and linear regres-
sion - evidence either via screen paper
that shows this method or concise de-
scription of this

0.3

Making just a single measurement
between two horizontal interference
points

0.1

G Distance to the screen at least L ≥ 70cm 0.3
Partial credit for L between 40cm and
70cm

0.2

L between 20cm and 40cm 0.1
H Choosing θ > 27◦ 0.2

partial credit for θ > 25◦ 0.1
I Partial points for value of s between

8µm and 12µm
0.1

Partial points for value of s between
9µm and 11µm

0.3

Full points for value of s between 9.4µm
and 10.6µm

0.5

J Suitable error estimation 0.2
If the error estimation is based on a
reasonable approach, but the numer-
ical estimates of the direct measure-
ment uncertainties are clearly under- or
overestimated

0.1

If the error estimation method itself is
flawed or not provided

0

Total on Task E2.d 3.0
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Table 7: Measurement data for experiment “hidden pattern”

x (mm) θ (◦) z t R5 (cm) R−5 (cm) D5 (cm) d (cm)
0 -23 -0.86 -0.42447 4.4 4.4 8.8 0.00602
2 -20 -0.74 -0.36397 4.4 4.3 8.7 0.00597
4 -16 -0.58 -0.28675 4.2 4.2 8.4 0.00604
6 -11 -0.41 -0.19438 4.1 4.1 8.2 0.00606
8 -7 -0.21 -0.12278 4.1 4.1 8.2 0.00599

10 -1 -0.01 -0.01746 4.1 4.1 8.2 0.00595
12 6 0.20 0.105104 4.1 4.1 8.2 0.00598
14 13 0.40 0.230868 4.2 4.2 8.4 0.00596
16 17 0.58 0.305731 4.3 4.3 8.6 0.00593
18 21 0.73 0.383864 4.3 4.3 8.6 0.00608
20 25 0.85 0.466308 4.4 4.4 8.8 0.00612
22 26 0.94 0.487733 4.5 4.6 9.1 0.00597
24 27 0.99 0.509525 4.6 4.5 9.1 0.00602
26 27 1.00 0.509525 4.6 4.5 9.1 0.00602
28 26 0.96 0.487733 4.5 4.6 9.1 0.00597
30 23 0.89 0.424475 4.4 4.4 8.8 0.00602
32 18 0.77 0.32492 4.2 4.2 8.4 0.00611
34 16 0.62 0.286745 4.2 4.3 8.5 0.00597
36 12 0.45 0.212557 4.1 4.1 8.2 0.00608
38 6 0.26 0.105104 4.1 4.1 8.2 0.00598
40 -1 0.06 -0.01746 4.1 4.1 8.2 0.00595
42 -8 -0.15 -0.14054 4.1 4.1 8.2 0.00601
44 -12 -0.35 -0.21256 4.2 4.1 8.3 0.00601
46 -21 -0.53 -0.38386 4.4 4.4 8.8 0.00594
48 -22 -0.69 -0.40403 4.4 4.4 8.8 0.00598
50 -24 -0.83 -0.44523 4.4 4.4 8.8 0.00607


