
Theoretical Problems - Solutions
T1: Sunny (10 pts)
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Figure 1: Top view of a light ray hitting the chair leg.
The incoming light ray strikes the cylinder at the blue
dot, and the reflected ray strikes the floor at the red
dot.

Part a) Since points A and B are very close, 𝐼0 is the
illuminance surplus due to direct sunlight.
Consider a small (infinitesimal) horizontal rectan-

gle [𝑥, 𝑥 + 𝛿𝑥] × [ 𝑦, 𝑦 + 𝛿𝑦] placed in the light beam.
As depicted in Fig 1, we let 𝑙 be the horizontal dis-
tance between the point where a ray hits the cylin-
der and where it hits the floor and 𝛼 the horizontal
angle between the ray and the surface normal. The
spot on the floor made by the light makes an angle
of 2𝛼 from the incident ray, and forms a small patch
of size (𝑙2𝛿𝛼)(𝛿𝑙) on the floor.
Considering the side view sketched in Figure 2, we

see that 𝛿𝑙 ∝ 𝛿𝑦 for both the ray that hits the ground
directly, or a ray that is reflected before hitting the
ground.
We thus have

𝐼0𝛿𝑥 = 2𝐼𝑙𝛿𝛼 (1)

Let 𝛽 = 𝜋 − 𝛼 as sketched in Fig 1. Then

𝛿𝑥 = 𝑎 (sin(𝛽 + 𝛿𝛽) − sin 𝛽) ≈ 𝑎 cos 𝛽𝛿𝛽 (2)

Therefore,
𝐼 = − 𝐼0𝑎

2𝑙
cos(𝛽) (3)

(Note that cos 𝛽 < 0.) This expression is accurate to
order (𝑎/𝑙)2, but is not in terms of the variables re-
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Figure 2: Side view, with the reflected light ray ro-
tated to lie in the same plane as the incident ray.

quested. A more accurate expression would be

𝐼 = − 𝐼0𝑎√
4𝑙2 + 𝑎2 sin2 (𝛽)

cos(𝛽),

but it is not necessary to find this expression.
To obtain 𝐼 as a function of 𝑟 and 𝜃, we need to

express 𝛽 and 𝑙 in terms of 𝑟 and 𝜃.
If 𝑎 � 𝑟, 𝑙 and 𝑟 almost coincide. To leading order

thus 𝑙 ≈ 𝑟 and 𝜃 ≈ 𝜋 − 2𝛼 = 2𝛽 − 𝜋. Substituting 𝑙 and 𝛽
in (3) results in

𝐼 ≈ 𝐼0𝑎

2𝑟
sin(𝜃/2) (4)

Part b) The rings appear because the fingers block
the light. For the middle ring, the finger is approxi-
mately horizontal.
For 𝑙0 be the horizontal distance 𝑙 for 𝛼 = 𝜋/2. Con-

sider the sketch in Fig. 2. Note that

𝑙 = 𝑙0 + 𝑎 cos𝛼 = 𝑙0 + 𝑎| cos(𝛽) | (5)

The minimum value 𝑅min is attained at 𝛼 = 𝛽 = 𝜋/2,
where 𝜃 ≈ 0 and 𝑅min ≈ 𝑙0 within an error of order
(𝑎/𝑟)2. Hence,

𝑙 ≈ 𝑅min + 𝑎 cos𝛼 = 𝑅min + 𝑎| cos(𝛽) |

The Cosine theorem applied to the triangle between
the center of the chair leg, the point where the ray
reflects form the leg and the point where it hits the
floor, gives the relation

𝑟2 = 𝑎2 + 𝑙2 − 2𝑎𝑙 cos(𝛽) (6)
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Using (6) and expanding, we obtain

𝑟2 = 𝑅2min + 4𝑎𝑅min cos𝛼 + 3𝑎2 cos2 𝛼

Using cos𝛼 ≈ sin(𝜃/2), and dropping terms of order
(𝑎/𝑟)2, we arrive at

𝑅 − 𝑅min ≈ 2𝑎 sin(𝜃/2) (7)

The factor of 2 is significant!

Marking scheme T1
Problem T1 a) Pts
A Correct angles, 2𝛼 + 𝜃 > 𝜋 0.5

Only state 2𝛼+𝜃 = 𝜋 without justification 0.2
B Reflection law (stated in any way) 0.5
C 𝑥 = 𝑎 sin𝛼 0.5
D Eq. 1 1.0

Missing factor of 2 -0.3
𝑟 instead of 𝑙 -0.3

E Eq. 3 for 𝐼 0.5
F Justify 𝑙 ≈ 𝑟 0.5

Assume 𝑙 ≈ 𝑟 without justification 0.2
G Eq. 4 for 𝐼 1.5
Total on T1 a) 5.0

Problem T1 b) Pts
H Cosine Law expression 1.0
I Eq. 5 for 𝑙 1.0

qualitative understanding why 𝑅(𝜃)
varies with 𝜃

0.5

J Justifying 𝑙0 ≈ 𝑅min to leading order 1
Only stating 𝑙0 ≈ 𝑅min 0.5

K Final Eq. 7 2.0
Writing 𝑅 − 𝑅min = 𝑎 sin(𝜃/2) 1.0
Only has 𝑅max − 𝑅min = 2𝑎 0.5
Only has 𝑅max − 𝑅min = 𝑎 0.0

Total on T1 b) 5.0
General rules for marking in T1:

• The grain size for marking is 0.1 Pts.
• Yellow shaded categories receive a single mark
• Partial marks can be awarded for most aspects.
• For each mistake in calculation (algebraic or nu-
meric) 0.3Pts. are deducted.

• If a mistake leads to a dimensionally incorrect ex-
pression no marks are given for the result.

• Propagating errors are not punished again unless
they are dimensionally wrong or entail oversim-
plified/wrong physics (e.g. neglecting friction ef-
fects).

• Getting a correct answer for a later part that could
only be arrived at by doing a previous part cor-
rectly will result in the minimum score(s) for pre-
vious part(s) that would support the end result.

• Justifying F can be done graphically, algebraically,
with words, but needs more than just writing 𝑟 ≈ 𝑙.

• Arriving at a correct G without supporting work
would score 4.1 for A-G as (0.2, 0.5, 0.5, 0.7, 0.5,
0.2, 1.5).

• Arriving at an incorrect G without supporting work
would score 0 for A-G.

• Arriving at a correct K without supporting work
would score 4.5 for L-O as (1.0, 1.0, 0.5, 2.0)

• Arriving at an incorrect K without supporting work
would score 0 for H-J, and then the points for K.
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T2: Floating table (10 pts)
Solution with forces First, let us consider the
forces and torques and show that in the configuration
shown in the figure, the table is indeed in equilib-
rium. By the word “table”, we understand the rigid
body formed by the plate and the frame attached to
it. In the following considerations and descriptions
of the table position we often use positions of points
A, B and C, which belong to the rigid table: distances
between them do not change. Since in the problem
statement, the motion is limited to the side view only,
the pair of short chains will always have the same
position when viewed from the side. So we will con-
sider them as a single chain (chain 1) with the tension
doubled. The same is true for the pair of long chains
(chain 2).
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𝑚®𝑔

®𝐹1
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Figure 3: Scheme of forces for the initial state.

There are 3 forces acting on a table (see Fig. 3):
plate weight 𝑚®𝑔 (at the center of mass of the table
C), and 2 tension forces from the chains: ®𝐹1 (at point
A, chain 1) and ®𝐹2 (at point B, chain 2). Since all the
forces only have vertical components different from
0, their horizontal components are balanced and for
their vertical components, the balance equation is:

−𝑚𝑔 + 𝐹1 − 𝐹2 = 0. (8)

Finally, consider the torque balance around the
point 𝐵:

𝑚𝑔 · 4𝑎 − 𝐹1 · 2𝑎 = 0. (9)

Solving the system of equations (8-9), we get 𝐹1 =
2𝑚𝑔 and 𝐹2 = 𝑚𝑔. Since both 𝐹1, 𝐹2 > 0, we conclude
that the chains are indeed tensioned and the system
is in equilibrium.
Now let’s analyze how the table rotates, when it

is displaced. Since the chains are tensioned and in-
extensible, the point 𝐵 can only travel along the cir-
cle 𝑐𝑏. Similarly, the distance between the point A0
and any point inside the circle 𝑐𝑎 is smaller than the
length of the short chain (4𝑎); the distance between
the point A0 and any point outside of the circle 𝑐𝑎 is
larger than 4𝑎.
Since the table is rigid, if we fix the point B and ro-

tate the table around it, point A would travel along
the circle 𝑐𝑡. From the way how 𝑐𝑡 intersects with
𝑐𝑎, we can conclude that if the table is rotated clock-
wise, the distance A0A decreases. And if it is rotated
counter-clockwise, A0A increases.

Let’s imagine we translate (move without rotation)
the table to the left, so the point 𝐵 travels to the point
𝐵′. Point 𝐴 would move to the point 𝐴′, as shown in
Fig. 4. Since 𝐴′ is outside of the circle 𝑐𝑎, A0A′ > A0A
and the table has to rotate clockwise (around B′) to
compensate for this change and return the point A′

back to the circle 𝑐𝑎 (point A′′) to satisfy the constant
chain length constraint.
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Figure 4: Translation to the left and clockwise rota-
tion of the table

If we translate the table in the opposite direction,
following similar arguments, we find that the table
rotates clockwise in this case too, see Fig. 5.
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Figure 5: Translation to the right and clockwise ro-
tation of the table
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Since the table rotates in the same direction for

both positive and negative horizontal displacements,
the Taylor expansion of the angle of rotation 𝜑(𝑥)
does not contain a linear term in 𝑥: 𝜑(𝑥) ∼ 𝑥2. This
means that for small horizontal displacements, we
can neglect the table rotation.
Let’s look at what happens when the table is dis-

placed infinitesimally from its initial position in the
horizontal direction (it will also move in the vertical
direction, but the displacement in the vertical direc-
tion is an order of magnitude smaller and we will ne-
glect it). The vertical components of the forces in the
chains do not change significantly, but as you can see
in the Fig. 6, the horizontal components of the forces
in both chains appear in the direction opposite to the
displacement. This means that the equilibrium is sta-
ble.
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Figure 6: Horizontal displacement of the table

Since we have already drawn a figure showing the
displaced position of the table, let us write the equa-
tion of motion for the table plate for small horizon-
tal displacements 𝑥, where 𝜃1 and 𝜃2 are small an-
gles between the chains 1 and 2 respectively and the
vertical. Since the table displacement is small, ten-
sion forces 𝐹1 and 𝐹2 cannot change significantly (the
force change is of the same order as the displace-
ment). Thus, we can use the previously found values:

𝑚 ¥𝑥 = −𝐹1 sin 𝜃1 − 𝐹2 sin 𝜃2 = −𝐹1𝜃1 − 𝐹2𝜃2 =

= −2𝑚𝑔
𝑥

4𝑎
−𝑚𝑔

𝑥

6𝑎
= −𝑚𝑔

2𝑥
3𝑎

,

where we have also considered the lengths of the
chains 4𝑎 (chain 1) and 6𝑎 (chain 2), neglected the
rotation of the plate and used small angle approxi-
mations. Rearranging this equation, we get:

¥𝑥 + 2𝑔
3𝑎

𝑥 = 0,

which describes horizontal oscillations of the table
plate with 𝜔 =

√
2𝑔/(3𝑎) = 8.09 s−1, frequency 𝜈 = 1.29Hz

and period
𝑇 = 777ms.

Solution with energies Let’s denote the small dis-
placement of the centre of mass from equilibrium po-
sition C to C′ as (𝑥, 𝑦), where 𝑥, 𝑦 � 𝑎, and the small
tilt of the table as 𝜑, as shown in Fig. 7.
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Figure 7: Infinitesimal displacement of the table

Given the small angle approximation 𝜑 � 1 (sin 𝜑 ≈
𝜑 and cos 𝜑 ≈ 1), the displacement of points from equi-
librium positions A and B to A′ and B′ are:

Δ𝐴𝑥 = 𝑥 − 5𝑎 sin 𝜑 − 2𝑎(1 − cos 𝜑) ≈ 𝑥 − 5𝑎𝜑,
Δ𝐴 𝑦 = 𝑦 − 2𝑎 sin 𝜑 + 5𝑎(1 − cos 𝜑) ≈ 𝑦 − 2𝑎𝜑,
Δ𝐵𝑥 = 𝑥 − 4𝑎(1 − cos 𝜑) ≈ 𝑥,

Δ𝐵 𝑦 = 𝑦 − 4𝑎 sin 𝜑 ≈ 𝑦 − 4𝑎𝜑.

Now we can write a condition that the squared
length of the small chain remains the same:

(𝑥 − 5𝑎𝜑)2 + (4𝑎 − 𝑦 + 2𝑎𝜑)2 = (4𝑎)2

𝑥2 − 10𝑎𝑥𝜑 + 25𝑎2𝜑2 − 8𝑎( 𝑦 − 2𝑎𝜑) + ( 𝑦 − 2𝑎𝜑)2 = 0,

Let’s notice that the largest term in 𝑥 is 𝑥2 and in
𝑦 and 𝑎𝜑, it’s 8𝑎( 𝑦 + 2𝑎𝜑). Thus, we can omit all other
terms, since they are of the higher order (and there-
fore smaller):

𝑥2 − 8𝑎( 𝑦 − 2𝑎𝜑) = 0,
𝑥2

8𝑎
− 𝑦 + 2𝑎𝜑 = 0. (10)

Doing the same for the long chain we get:

𝑥2 + (6𝑎 + 𝑦 − 4𝑎𝜑)2 = (6𝑎)2

𝑥2 + 12𝑎( 𝑦 − 4𝑎𝜑) + ( 𝑦 − 4𝑎𝜑)2 = 0,

Omitting higher order terms we get:

𝑥2 + 12𝑎( 𝑦 − 4𝑎𝜑) = 0,
𝑥2

12𝑎
+ 𝑦 − 4𝑎𝜑 = 0. (11)

Solving (10) and (11) as linear equations on 𝑦 and 𝜑,
we get:

𝑦 =
𝑥2

3𝑎
, 𝜑 =

5𝑥2

48𝑎2
.

Since the potential energy of the table

𝑈 = 𝑚𝑔 𝑦 =
2
3𝑎

𝑚𝑔
𝑥2

2
, (12)
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doesn’t have a term linear in 𝑥, we conclude that the
system is in equilibrium. And since the coefficient
for 𝑥2 is positive, the equilibrium is stable.
The kinetic energy of the table is:

𝐸 = 𝑚
¤𝑥2 + ¤𝑦2

2
+ 𝐼

¤𝜑2
2

≈ 𝑚
¤𝑥2
2
, (13)

where 𝐼 is a moment of inertia with respect to rota-
tion around the axis through the centre of mass C.
Since both 𝑦 and 𝜑 depend on 𝑥2, their squared
derivatives will be proportional to 𝑥2 ¤𝑥2 and can be
neglected when compared to ¤𝑥2 term.
Finally, we can find the period of oscillations from

the ratio of coefficients of (13) and (12):

𝑇 = 2𝜋

√
𝑚

/
2𝑚𝑔

3𝑎
= 2𝜋

√
3𝑎
2𝑔

= 0.777 s.

Solution with the curvature We begin with the
observation that at the initial horizontal position,
points A and B in Fig. 3 move horizontally. There-
fore, the instantaneous centre of table’s rotation is
at infinity (found as the intersection of lines perpen-
dicular to the velocity vectors, which are parallel in
this case), or in other words there is no rotation. An-
other way to see it is to consider the projections of
the velocities 𝑣𝐴 and 𝑣𝐵 to the line 𝐴𝐵 which should
be the same in a rigid body. Thus 𝑣𝐴 = 𝑣𝐵 = 𝑣 and all
the points of the table move with the same velocity,
i.e. there is no immediate rotation.

®𝑣𝐵

®𝑣𝐴
𝐴

𝐵𝐶

Figure 8: Immediate velocities given the constraints

Consequently, no rotational kinetic energy is in-
volved, and the motion of the table can be treated
as the motion of a point mass located at the centre of
mass, point C. Since at the given configuration, the
𝑣𝐶 can only be horizontal, we conclude that initially
table is at equilibrium. All that remains is to find the
radius of curvature 𝑅 of its trajectory and calculate
𝑇 = 2𝜋

√
𝑅/𝑔.

To find the radius of curvature, we note that for an
arbitrary point 𝑃 on the table, the curvature ®𝑐 = �̂�/𝑅

𝐶
𝐵

𝐴

𝑤𝐵

𝑤𝐴𝑦

𝑤𝐴𝑥 𝛼

𝛼

𝛼

𝛼

𝛼

𝛼

𝑤𝐶

Figure 9: Immediate accelerations

of its trajectory is a linear function of its coordinates,
where �̂� denotes a unit vector pointing towards the
centre of curvature. Indeed, using a non-inertial ref-
erence frame where the rigid body remains at rest
with origin at 𝑂, the acceleration of point 𝑃 is the su-
perposition of: the acceleration of 𝑂, the centripetal
acceleration − ®𝑂𝑃𝜔2, and the tangential acceleration
®𝜀 × ®𝑂𝑃. All of these are linear functions of the coordi-
nates of point 𝑃, where ®𝜀 denotes the angular accel-
eration and 𝜔 the angular speed. Hence, in the lab
frame, the acceleration of point 𝑃 is a linear function
of coordinates, as must be its centripetal accelera-
tion 𝑣2 ®𝑐. Since the angular speed of the table is zero,
all points move with the same speed, so ®𝑐 must be a
linear function of coordinates.

The remaining calculation is straightforward: due
to the translational motion of the body, curvatures
depend only on the horizontal coordinate 𝑥. The cur-
vature of 𝐵 at 𝑥 = 4𝑎 is 𝑐𝐵 = −1/(6𝑎), with theminus sign
indicating that the vector points downwards. The
curvature of 𝐴 at 𝑥 = 2𝑎 is 𝑐𝐴 = 1/(4𝑎). Hence, the
curvature of 𝐶 is 1/(4𝑎) + (1/(4𝑎) + 1/(6𝑎)) = 2/(3𝑎), giv-
ing 𝑅 = 1.5 dm and resulting in 𝑇 = 777ms. Positive
curvature means that the position is a stable equilib-
rium.

Another way to see it, is to consider normal accel-
eration 𝑤𝐶 of point C. For 2 points of a rigid body 𝐶
and 𝐵, the projections of their accelerations 𝑤𝐶, 𝑤𝐵 to
the segment 𝐵𝐶 differ by the value 𝜔2 |𝐵𝐶 |. However,
in our case since there is no rotation, the projections
of acceleration are equal (like velocities). This means
that the accelaration 𝑤𝐵 is also normal and equal to
𝑤𝐵 = 𝑣2/(6𝑎). Point 𝐴 has both normal and tangential
acceleration. Comparing projections of points 𝐴, 𝐵,
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and 𝐴, 𝐶, we get:

−𝑤𝐵 cos𝛼 = 𝑤𝐴𝑦 cos𝛼 − 𝑤𝐴𝑦 sin𝛼,
𝑤𝐶 cos𝛼 = 𝑤𝐴𝑦 cos𝛼 + 𝑤𝐴𝑦 sin𝛼,

Thus, we find that

𝑤𝐶 = 𝑤𝐵 + 2𝑤𝐴𝑦 =
𝑣2

6𝑎
+ 2 𝑣

2

4𝑎
=

𝑣2

3𝑎/2 ,

so radius of curvature is 𝑅 = 3𝑎/2.
You can visualize the motion of the table using a

GeoGebra tool, following the web link or the qr code
https://www.geogebra.org/m/wbqwp3tf

Marking scheme T2
A Table is in equilibrium

Partial points:
– (1pt) Sketch of forces or eqn for forces

2.0

B The equilibrium is stable
Partial points:
– (1pt) Sketch with returning forces, but
there is no proof that 𝜔0 = 0
– (1pt) There is a statement that the
stability comes from 𝑦 = 𝑘𝑥2 if 𝑘 > 0, but
𝑘 is not found correctly (and thus could
potentially be negative)

2.0

C Table can rotate:
whether it is clear from the sketch or
from the equations, i.e. 𝜑 is introduced

1.0

D Table does not have immediate rotation
whether it is proved separately or follows
naturally from the results of calculations:
– geometry considered ⇒ 𝜑 ∼ 𝑥2

– eqn for contraints ⇒ 𝜑 ∼ 𝑥2

– immediate velocities ⇒ no rotation

1.0

E The plan how to find the period of oscil-
lation:
– 2nd Newton’s law ¥𝑥 ∼ −𝑥
– idea to find kinetic and potential ener-
gies
– using the curvature of the trajectory

1.0

F Finding all the elements for the plan
above:
– small horizontal forces
– energies to the correct approximations
– accelerations/curvatures
Partial points:
– (1pt) if not all elements are found or
they are found with mistakes
– (1pt) if there is no proof 𝜔0 = 0 (or no
consideration about the rotation at all),
but other than that, everything is correct
– (0pts) if some elements are there, but
the plan was different (e.g. the student
was looking for energies, but has the
expression for forces)

2.0

G Formula and number for 𝑇
Partial points:
– (0.5pts) only formula or a number
– (0.5pts) simple mistake (like inverse
formula under the root)

1.0

Total 10.0
– Only a single partial point is applied (whatever is
larger)
– If there is a single simple arithemetic error/typo in
calculations in item F, which leads to a wrong for-
mula value in item G, then F and G receive 1 pt each
(no propagation of error). This doesn’t apply to more
profound errors in physics/geometry
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T3: Crossed Wires (10 pts)

Part a) In the absence of an externally imposed
magnetic field, an infinite, straight, thin wire creates
a magnetic field whose field lines are closed circular
loops. These loops lie in the plane perpendicular to
the wire and are centered on the wire (red circle in
the figure).
Now, consider the effect of introducing the exter-

nally imposed magnetic field. At any point, the to-
tal magnetic field is the vector sum of the magnetic
field of the wire and the externally imposed magnetic
field. The total magnetic field now has a component
parallel to the wire. This means the magnetic field
lines do not remain in a plane perpendicular to the
wire. They do not form closed loops any more. In-
stead, they will spiral around the wire, tracing out a
helix (blue curve in the figure).

𝐼

wire

Part b) It is a standard result that the magnetic
field around an infinite, straight, thin wire carrying a
current 𝐼 has magnitude 𝜇0𝐼/2𝜋𝜌, where 𝜌 is the per-
pendicular distance to the wire. This magnetic field
strength increases as 𝑟 decreases. Before consider-
ing the wire configuration of part b, it will be useful
to discuss what happens in part a if the helical field
line is very close to the wire. By ‘close’, we mean
values of 𝜌 small enough that the magnetic field of
the wire is much greater than the externally applied
magnetic field. Then, the field lines cannot deviate
much from the circular loops they would trace out if
the externally applied field were not present. This
means the helix would be wound very tightly.
Now we move on to discuss the wire configuration

of part b. Let the magnetic field due to wire 𝑋 be ®𝐵𝑋

and the magnetic field due to wire 𝑌 be ®𝐵𝑌 . At any
point in space, the magnetic field is the vector sum
of ®𝐵𝑋 and ®𝐵𝑌 . At points that are close to wire 𝑋 (dis-
tances 𝜌 � 𝑎), we have | ®𝐵𝑋 | � | ®𝐵𝑌 |. Therefore, as in
part a, the field lines near wire 𝑋 will not deviate very
much from circular loops centered on wire 𝑋. How-
ever, ®𝐵𝑌 has a component along wire 𝑋, so the field
lines do not perfectly close on themselves. Instead,
they will trace out a tightly wound spiral around wire
𝑋, as shown in the figure for the previous part. Unlike
there, the spiral is not necessarily a perfect helix: as
the field lines spiral to larger or smaller 𝑥, the radius
𝜌(𝑥) of the spiral might change. To find the distance
of closest approach of a field line to wire 𝑋, we must
find the minimal value of 𝜌(𝑥) as 𝑥 varies.
The spiraling field line shown in the figure below

seems to trace out a surface, 𝑆, surrounding wire 𝑋.
A more precise definition of 𝑆 is as follows. Let 𝐶 be

the circle of radius 𝑟, centered on wire 𝑋, in the plane
𝑥 = 3𝑎. Through every point on 𝐶, we can draw a mag-
netic field line. The set of field lines passing through
points of 𝐶 traces out a surface; this is the surface we
define as 𝑆. Each field line in this set spirals around
wire 𝑋 as described above, so 𝑆 looks like a ‘funnel’
whose cross section, at any fixed 𝑥, is nearly circu-
lar. The cross section is nearly circular as long as the
condition 𝜌 �

√
𝑎2 + 𝑥2 is satisfied, because this means

the magnetic field is perturbed only slightly by wire
𝑌 and the field lines do not deviate much from the
circular loops that they would trace if wire 𝑌 were
not present. Near point P, 𝜌 �

√
𝑎2 + 𝑥2 is satisfied

because 𝑟 � 𝑎. We will verify a posteriori that the
magnetic field line never reaches values of 𝜌 that vi-
olate the condition 𝜌 �

√
𝑎2 + 𝑥2.
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The key idea is that the magnetic flux through the
middle of the ‘funnel’ 𝑆 is conserved. No magnetic
flux exits through the sides of the funnel because—
by construction—the magnetic field is tangent to 𝑆 at
every point. For this reason, the region bounded by 𝑆
is called a ‘flux tube’. The flux through the flux tube
is entirely due to ®𝐵𝑌 , which is approximately uniform
over the circular cross section at each 𝑥.
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The component of ®𝐵𝑌 directed along the wire is
𝐵‖ = | ®𝐵𝑌 | cos(𝜃) = (𝜇0𝐼/2𝜋) (𝑎/(𝑎2+𝑥2)) (see figure above).
Therefore, the conserved flux is 1

2𝜇0𝐼𝑎𝜌
2/(𝑎2 + 𝑥2). The

equation of 𝑆 is then 𝜌2/(𝑎2 + 𝑥2) = const. = 𝑟2/10𝑎2, us-
ing the fact that 𝑆 passes through P. We can now see
that 𝜌 never grows so large that 𝜌 �

√
𝑎2 + 𝑥2 fails, so

our equation for 𝑆 remains valid for all 𝑥. Then, the
minimal value of 𝜌(𝑥) is 𝜌(0) = 𝑑 = 𝑟/

√
10.

Part c) Let the point of closest approach be Q. We
need to calculate the length of the spiraling field line
between points P and Q. Due to the tight winding of
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the field lines, this length is much larger than 𝑟 or 𝑎.
Therefore, the precise position of point Q around the
loop closest to 𝑥 = 0 (for example, whether it is on
the side closer to wire 𝑌 or on the side further from
wire 𝑌) is unimportant. To leading order, 𝐿 equals the
length along the field line from P to the point on the
field line with 𝑥 = 0.
Consider two points on the field line whose 𝑥-

coordinates differ by a small amount d𝑥. The length
d𝐿 of the short segment of field line joining these
points is given by d𝑥 ≈ (𝐵‖/𝐵⊥)d𝐿. Here, we have
decomposed the magnetic field vector into a compo-
nent 𝐵‖ along wire 𝑋 and a component 𝐵⊥ perpen-
dicular to wire 𝑋. In the previous part, we found
𝐵‖ = (𝜇0𝐼/2𝜋) (𝑎/(𝑎2 + 𝑥2)). The field of wire 𝑋 gives the
dominant contribution to 𝐵⊥, so 𝐵⊥ = 𝜇0𝐼/2𝜋𝜌. These
expressions are approximate and ignore corrections
of order 𝑟/𝑎. Since 𝑟/𝑎 ≈ 1/100, ignoring these correc-
tions is acceptable for the required accuracy of 20%.
The total length is obtained by integration:

𝐿 =
∫ 𝑃

𝑄
d𝐿 =

∫ 3𝑎

0

𝑎2 + 𝑥2

𝑎𝜌
d𝑥 .

Now, we use the equation for 𝜌(𝑥) derived in part b:
𝜌(𝑥)2/(𝑎2 + 𝑥2) = 𝑟2/(10𝑎2). The result is

𝐿 =
∫ 3𝑎

0

√
10
𝑟

√
𝑎2 + 𝑥2 d𝑥 =

√
10𝑎2

𝑟

∫ 3

0

√
1 + 𝑢2 d𝑢 .

This expression must be numerically evaluated to
within 20% relative error. To obtain a numerical
value for the integral, we could use the trapezium
rule or we could draw the curve 𝑦 =

√
1 + 𝑥2 be-

tween 𝑥 = 0 and 𝑥 = 3 on graph paper and count
the number of squares beneath the curve. In fact,
a crude estimate using a single trapezium is suffi-
cient for the required accuracy:

∫ 3
0

√
1 + 𝑢2 d𝑢 ≈

∫ 3
0 [1 +

(
√
10 − 1) (𝑢/3)]d𝑢 = 3 + (3/2)(

√
10 − 1) ≈ 6.24, resulting

in a length of 𝐿 ≈ 19.7𝑎2/𝑟 ≈ 197m. The exact result is
𝐿 ≈ 17.9𝑎2/𝑟 ≈ 179m.
Although not necessary for full credit, it is pos-

sible to evaluate the integral exactly. Substi-
tuting 𝑢 = sinh(𝛽) with d𝑢 = cosh(𝛽)d𝛽 and using
cosh2 (𝛽) − sinh2 (𝛽) = 1 gives∫ 3

0

√
1 + 𝑢2 d𝑢 =

∫ sinh−1 (3)

0
cosh2 (𝛽) d𝛽 .

Now, we use cosh2 (𝛽) = (𝑒2𝛽 +2+𝑒−2𝛽)/4 = (cosh(2𝛽) +1)/2
to obtain∫ 3

0

√
1 + 𝑢2 d𝑢 =

1
2

∫ sinh−1 (3)

0
[cosh(2𝛽) + 1] d𝛽

=
1
4
[sinh(2𝛽) + 2𝛽]sinh

−1 (3)
0 .

Finally, we use sinh(2𝛽) = (𝑒2𝛽 − 𝑒−2𝛽)/2 =
2 sinh(𝛽) cosh(𝛽) and cosh(sinh−1 (3)) =

√
1 + sinh(sinh−1 (3))2 =

√
10 to find∫ 3

0

√
1 + 𝑢2 d𝑢 =

1
2

[
3
√
10 + sinh−1 (3)

]
=
1
2

[
3
√
10 + ln(3 +

√
10)

]
≈ 5.65 .

This gives 𝐿 ≈ 17.9𝑎2/𝑟 ≈ 179m, as stated above.

Marking scheme T3
Problem T3 a) Pts.
A draw clear sketch (straight wire, smooth

field line, …)
0.2

field line …
B …is not closed 0.2
C …is periodic in 𝑥 0.2
D …is helical (only 0.1 if chirality is wrong) 0.2
E …is centered on wire 0.2
Total on T3 a) 1.0

Problem T3 b) Pts.
A state or derive formula for magnetic field

of infinite, straight wire (only 0.2 if direc-
tion is not clear)

0.4

sketch or explain shape of field line
B field line is locally nearly circular 0.2
C field line resembles helix tightly wound

around wire
0.2

D radius of helix is changing 0.3
E idea to consider funnel surface 𝑆 0.5
F realize and justify that ®𝐵𝑌 -flux is con-

served along funnel
1.0

G argue or show that radius of flux tube is
smallest at 𝑥 = 0

0.5

H approximate ®𝐵𝑌 as uniform in flux tube
cross-sections

0.4

I determine flux at 𝑥 = 3𝑎 (0.3 for projec-
tion, 0.2 for area)

0.5

J determine flux at 𝑥 = 0 using 𝜌 0.3
K calculate final result for 𝑑 0.5
L check of validity of approximations in

considered region
0.2

Total on T3 b) 5.0

Problem T3 c) Pts.
A realize that 𝐿 is much larger than 𝑎 and 𝑟

(also if implicit)
0.2

B equate d𝑥 with d𝐿 using 𝐵-field compo-
nents or an angle

0.4

C realize that 𝐵⊥ is dominated by wire 𝑋
(might be mentioned in part b) already)

0.3

D derive integral expression for 𝐿 0.4
E provide expression for 𝜌 in terms of 𝑎, 𝑟

and 𝑥 (also if in part b))
0.5

F carry out reasonable numerical approxi-
mation or rigorous calculation of integral

1.2

G result with 140m ≤ 𝐿 ≤ 215m (-0.2 if # sig-
nificant figures is 1 or > 3)

1.0

Total on T3 c) 4.0
General rules for marking in T3:
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• The grain size for marking is 0.1 Pts.
• Partial marks can be awarded for most aspects.
• For each mistake in calculation (algebraic or nu-
meric) 0.2Pts. are deducted.

• If a mistake leads to a dimensionally incorrect ex-
pression no marks are given for the result.

• Propagating errors are not punished again unless
they are dimensionally wrong or entail oversim-
plified/wrong physics (e.g. neglecting friction ef-
fects).

• In cases, where in part b) the distance of closest
approach is determined by using an approxima-
tion that only considers the 𝐵-field close to P (or
any similar simplification), the following maximum
marks can be obtained: A to C - 0.2 each, E - 0.3
for the idea to determine 𝑑 from a local considera-
tion, H - 0.4, K - 0.3 for a simplified calculation of
𝑑. Total: max. 1.6 Pts.


