## Part 1. Calibration

From the relationship between $f$ and $C$ given,

$$
f=\frac{\alpha}{C+C_{S}} \quad \Leftrightarrow \quad \frac{1}{f}=\frac{1}{\alpha} C+\frac{C_{S}}{\alpha}
$$

That is, theoretically, the graph of $\frac{1}{f}$ on the Y -axis versus C on the X -axis should be linear of which the slope and the Y-intercept is $\frac{1}{\alpha}$ and $\frac{C_{S}}{\alpha}$ respectively.
The table below shows the measured values of $C$ (plotted on the X -axis,) $f$ and, additionally, $\frac{1}{f}$, which is plotted on the Y -axis.


From this graph, the slope $\left(\frac{1}{\alpha}\right)$ and the Y-intercept $\left(\frac{C_{S}}{\alpha}\right)$ is equal to $0.0014 \mathrm{~s} / \mathrm{nF}$ and 0.0251 ms respectively.

Hence,

$$
\alpha=\frac{1}{\text { slope }}=\frac{1}{0.0014 \mathrm{~s} / \mathrm{nF}}=714 \mathrm{nF} / \mathrm{s}
$$

and

$$
C_{S}=\frac{\mathrm{Y}-\text { intercept }}{\text { slope }}=\frac{0.0251 \mathrm{~ms}}{0.0014 \mathrm{~s} / \mathrm{nF}}=17.9 \mathrm{pF} \quad \text { as required. }
$$

## Part II. Determination of geometrical shape of parallel-plates capacitor

PATTERN I: The expected graph of $C$ versus the position


PATTERN II: The expected graph of $C$ versus the position


PATTERN III: The expected graph of $C$ versus the position


By measuring $f$ and $C$ versus $x$ (the distance moved between the two plates,) the data and the graphs are shown below.

| $\mathrm{x}(\mathrm{mm})$ | $\mathrm{f}(\mathrm{kHz})$ | $\mathrm{C}(\mathrm{pF})$ | $\mathrm{x}(\mathrm{mm})$ | $\mathrm{f}(\mathrm{kHz})$ | $\mathrm{C}(\mathrm{pF})$ |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 0 | 7.41 | 77.9 | 30 | 4.94 | 126.1 |
| 1 | 8.09 | 69.8 | 31 | 5.52 | 110.9 |
| 2 | 8.64 | 64.2 | 32 | 6.19 | 96.9 |
| 3 | 9.30 | 58.3 | 33 | 6.48 | 91.7 |
| 4 | 9.30 | 58.3 | 34 | 6.64 | 89.1 |
| 5 | 8.21 | 68.5 | 35 | 5.72 | 106.4 |
| 6 | 7.02 | 83.3 | 36 | 5.08 | 122.1 |
| 7 | 6.40 | 93.1 | 37 | 4.39 | 144.2 |
| 8 | 5.98 | 100.9 | 38 | 4.06 | 157.4 |
| 9 | 5.91 | 102.4 | 39 | 3.97 | 161.4 |
| 10 | 6.38 | 93.5 | 40 | 4.32 | 146.8 |
| 11 | 6.96 | 84.1 | 41 | 4.86 | 128.5 |
| 12 | 7.61 | 75.4 | 42 | 5.33 | 115.5 |
| 13 | 8.40 | 66.5 | 43 | 6.05 | 99.6 |
| 14 | 8.20 | 68.6 | 44 | 5.98 | 100.9 |
| 15 | 7.13 | 81.7 | 45 | 5.14 | 120.5 |
| 16 | 6.37 | 93.6 | 46 | 4.47 | 141.3 |
| 17 | 5.96 | 101.3 | 47 | 3.93 | 163.3 |
| 18 | 5.38 | 114.3 | 48 | 3.74 | 172.5 |
| 19 | 5.33 | 115.5 | 49 | 3.64 | 177.7 |
| 20 | 5.72 | 106.4 | 50 | 3.93 | 163.3 |
| 21 | 6.34 | 94.2 | 51 | 4.30 | 147.6 |
| 22 | 6.85 | 85.8 | 52 | 4.91 | 127.0 |
| 23 | 7.53 | 76.4 | 53 | 5.46 | 112.3 |
| 24 | 7.23 | 80.3 | 54 | 5.49 | 111.6 |
| 25 | 6.33 | 94.3 | 55 | 4.64 | 135.4 |
| 26 | 5.56 | 110.0 | 56 | 4.07 | 157.0 |
| 27 | 5.36 | 114.8 | 57 | 3.62 | 178.8 |
| 28 | 4.73 | 132.5 | 58 | 3.36 | 194.1 |
| 29 | 4.53 | 139.2 |  |  |  |
|  |  |  |  |  |  |

Experimental Competition: 14 July 2011
Question 1
Page 4 of 7


From periodicity of the graph, period $=1.0 \mathrm{~cm}$
Simple possible configuration is:


The peaks of $C$ values obtained from the $C$ vs. $x$ graph are provided in the table below. These maximum $C$ are plotted (on the Y-axis) vs. nodes (on the X -axis.)

| node | C_max |
| ---: | ---: |
| 1 | 105.1 |
| 2 | 118.6 |
| 3 | 139.5 |
| 4 | 163.7 |
| 5 | 182.1 |



This graph is linear of which the slope is the dropped off capacitance $\Delta C=19.9 \mathrm{pF} /$ section. Given that the distance between the plates $d=0.20 \mathrm{~mm}, K=1.5$,

$$
\Delta C \approx \frac{K \varepsilon_{0} A}{d}
$$

and $\quad A=5 \times 10^{-3} \mathrm{~m} \times b \mathrm{~mm} \times 10^{-3} \mathrm{~m}^{2}$

Then, $\quad b \mathrm{~mm} \approx \frac{\Delta C d}{K \varepsilon_{0} \times 10^{-3} \times 5 \times 10^{-3}} \approx 60 \mathrm{~mm} \quad$ if medium between plates is the dielectric of which $K=1.5$.

## Part III. Resolution of digital micrometer

From the given relationship between f and $\mathrm{C}, f=\frac{\alpha}{C+C_{S}}$,

$$
\begin{aligned}
\Delta f \simeq\left|\frac{d f}{d C}\right| \Delta C & =\left|\frac{-\alpha}{\left(C+C_{S}\right)^{2}}\right| \Delta C \\
& =\frac{f^{2}}{\alpha} \Delta C \\
\Leftrightarrow \quad \Delta C & =\frac{\alpha}{f^{2}} \Delta f
\end{aligned}
$$

And since C linearly depends on $\mathrm{x}, C=m x+\beta \quad \Rightarrow \quad \Delta C=m \Delta x$.
Hence,

$$
\Delta x=\frac{\alpha}{m f^{2}} \Delta f
$$

where $\Delta f$ is the smallest change of the frequency f which can be detected by the multimeter, $x_{0}$ is the operated distance at $f=5 \mathrm{kHz}$, and m is the gradient of the $C$ vs. $x$ graph at $x=x_{0}$.

From the f vs. $x$ graph, at $f=5 \mathrm{kHz}$, The gradient is then measured on the $C$ vs. $x$ graph around this range.


From this graph, $m=17.5 \mathrm{pF} / \mathrm{mm}=1.75 \times 10^{-8} \mathrm{~F} / \mathrm{m}$.
Using this value of $\mathrm{m}, f=5 \mathrm{kHz}, \alpha=714 \mathrm{nF} / \mathrm{s}$, and $\Delta f=0.01 \mathrm{kHz}$,

$$
\Delta x=\frac{714 \times 10^{-9}}{\left(1.75 \times 10^{-8}\right)\left(5 \times 10^{3}\right)^{2}} \times\left(0.01 \times 10^{3}\right)=0.016 \mathrm{~mm}
$$

NB. The $C$ vs. $x$ graph is used since C (but not f ) is linearly related to $x$.

## Alternative method for finding the resolution

(not strictly correct)
Using the $f$ vs. $x$ graph and the data in the table around $f=5 \mathrm{kHz}$, it is found that when f is changed by $1 \mathrm{kHz}(\Delta f=1 \mathrm{kHz}$, x is roughly changed by $1.5 \mathrm{~mm}(\Delta x \simeq 1.5 \mathrm{~mm}$.) Hence, when f is changed by $\Delta f=0.01 \mathrm{kHz}$ (the smallest detectable of the change,) the distance moved is $\Delta x \simeq 0.015 \mathrm{~mm}$.

