Solutions

A single spherical silver nanoparticle

Volume of the nanoparticle: $V=\frac{4}{3} \pi R^{3}=4.19 \times 10^{-24} \mathrm{~m}^{3}$.
Mass of nanoparticles: $M=V \rho_{\mathrm{Ag}}=4.39 \times 10^{-20} \mathrm{~kg}$
Number of ions: $N=N_{A} \frac{M}{M_{\mathrm{Ag}}}=2.45 \times 10^{5}$.
2.1 Charge density $\rho=\frac{e N}{V}=9.38 \times 10^{9} \mathrm{Cm}^{-3}$

Electron concentration $n=\frac{N}{V}=5.85 \times 10^{28} \mathrm{~m}^{-3}$, so charge density $\rho=e n$
Total charge of free electrons $Q=e N=3.93 \times 10^{-14} \mathrm{C}$,
Total mass of free electrons $m_{0}=m_{e} N=2.23 \times 10^{-25} \mathrm{~kg}$.

The electric field in a charge-neutral region inside a charged sphere

For a sphere with radius R and constant charge density ρ, for any point inside the sphere designated by radius-vector $\mathbf{r}=r \mathbf{e}_{r}(r<R)$ Gauss's law yields directly $4 \pi r^{2} \varepsilon_{0} \boldsymbol{E}_{+}=$ $\frac{4}{3} \pi r^{3} \rho \boldsymbol{e}_{r}$, where \boldsymbol{e}_{r} is the unit radial vector pointing away from the center of the sphere. Thus, $\boldsymbol{E}_{+}=\frac{\rho}{3 \varepsilon_{0}} \boldsymbol{r}$.
Likewise, inside another sphere of radius R_{1} and charge density $-\rho$ the field is $\boldsymbol{E}_{-}=$
$2.2 \frac{-\rho}{3 \varepsilon_{0}} \boldsymbol{r}^{\prime}$, where \boldsymbol{r}^{\prime} is the radius-vector of the point in the coordinate system with the origin in the center of this sphere.

Merging the two charge configurations gives the setup we want with $\boldsymbol{r}^{\prime}=\boldsymbol{r}-\boldsymbol{r}_{d}$. So inside the charge-free region $\left|\boldsymbol{r}-\boldsymbol{x}_{\mathrm{p}}\right|<R_{1}$ the field is $\boldsymbol{E}=\boldsymbol{E}_{+}+\boldsymbol{E}_{-}=\frac{\rho}{3 \varepsilon_{0}} \mathbf{r}+$ $\frac{-\rho}{3 \varepsilon_{0}}\left(\boldsymbol{r}-\boldsymbol{x}_{d}\right)$ or $\boldsymbol{E}=\frac{\rho}{3 \varepsilon_{0}} \boldsymbol{x}_{d}$ with the pre-factor $A=\frac{1}{3}$
"

The restoring force on the displaced electron cloud
With $\boldsymbol{x}_{\mathrm{p}}=x_{\mathrm{p}} \boldsymbol{e}_{x}$ and $x_{\mathrm{p}} \ll R$ we have from above that approximately the filed induced inside the particle is $\boldsymbol{E}_{\text {ind }}=\frac{\rho}{3 \varepsilon_{0}} \boldsymbol{x}_{\mathrm{p}}$. The number of electrons that produced $\boldsymbol{E}_{\text {ind }}$ is negligibly smaller than the number of electrons inside the particle, so $\boldsymbol{F} \cong Q \boldsymbol{E}_{\text {ind }}=$
2.3 $(-e N) \frac{\rho}{3 \varepsilon_{0}} \boldsymbol{x}_{\mathrm{p}}=-\frac{4 \pi}{9 \varepsilon_{0}} R^{3} e^{2} n^{2} x_{p} \boldsymbol{e}_{x}$ (like for a harmonic oscillator).
The work done on the electrons to shift the electron cloud is $W_{\mathrm{el}}=-\int_{0}^{x_{\mathrm{p}}} F\left(x^{\prime}\right) \mathrm{d} x^{\prime}=\frac{1}{2}\left(\frac{4 \pi}{9 \varepsilon_{0}} R^{3} e^{2} n^{2}\right) x_{\mathrm{p}}^{2}$

The spherical silver nanoparticle in an external constant electric field

[^0]radius R and height $x_{p}:-\Delta Q=-\rho \pi R^{2} x_{\mathrm{p}}=-\pi R^{2} n e x_{\mathrm{p}}$.

The equivalent capacitance and inductance of the silver nanoparticle

2.5 a	The electric energy $W_{\text {el }}$ of a capacitor with capacitance C holding charges $\pm \Delta Q$ is $W_{\mathrm{el}}=\frac{\Delta Q^{2}}{2 C}$. The energy of such capacitor is equal to the work (see 2.3) done to separate the charges (see 2.4), thus $C=\frac{\Delta Q^{2}}{2 W_{e l}}=\frac{9}{4} \varepsilon_{0} \pi R=6.26 \times 10^{-19} \mathrm{~F}$.	0.7
2.5 b	Equivalent scheme for a capacitor reads: $\Delta Q=C V_{0}$. Combining charge from (2.4) and capacitance from (2.5a) gives $V_{0}=\frac{\Delta Q}{C}=\frac{4}{3} R E_{0}$.	0.4

| | The kinetic energy of the electron cloud is defined as the kinetic energy of one electron
 multiplied by the number of electrons in the cloud | |
| :--- | :--- | :--- | :--- |
| 2.6 a | $W_{\text {kin }}=\frac{1}{2} m_{e} v^{2} N=\frac{1}{2} m_{e} v^{2}\left(\frac{4}{3} \pi R^{3} n\right)$. | 0.7 |
| The current I is the charge of electrons in the cylinder of area πR^{2} and height $v \Delta t$
 divided by time Δt, thus $I=-e n v \pi R^{2}$. | | |
| 2.6 b | The energy carried by current I in the equivalent circuit with inductance L is $W=\frac{1}{2} L I^{2}$
 is, in fact, the kinetic energy of electrons $W_{\text {kin }}$. | |
| | (2.6a) results $L=\frac{4 m_{e}}{3 \pi R n e^{2}}=2.57 \times 10^{-14} \mathrm{H}$. | |

The plasmon resonance of the silver nanoparticle

2.7 a	From the LC-circuit analogy we can directly derive $\omega_{p}=(L C)^{-1 / 2}=\sqrt{n e^{2} / 3 \varepsilon_{0} m_{e}}$ Alternatively it is possible to use the harmonic law of motion in (2.3) and get the same result for the frequency	0.5
2.7 b	$\omega_{\mathrm{p}}=7.88 \times 10^{15} \mathrm{rad} / \mathrm{s}$, for light with angular frequency $\omega=\omega_{\mathrm{p}}$ wavelength is $\lambda_{\mathrm{p}}=2 \pi c / \omega_{\mathrm{p}}=239 \mathrm{~nm}$.	0.4

The silver nanoparticle illuminated with light at the plasmon frequency

$2.8 \mathrm{a} |$| The velocity of an electron $v=\frac{d x}{d t}=-\omega x_{0} \sin \omega t=v_{0} \sin \omega t$. For harmonic motion it | |
| :--- | :--- | :--- |
| is enough to average over period of oscillations. The time-averaged kinetic energy on | |
| the electron $\left\langle W_{k}\right\rangle=\left\langle\frac{m_{e} v^{2}}{2}\right\rangle=\frac{m_{e}}{2}\left\langle v^{2}\right\rangle$. During time t_{0} each electron hits the ions t_{0} / τ | |
| times. So The energy lost in the whole nanoparticle during one period of oscillations is | |
| $W_{\text {heat }}=N\left\langle\frac{m_{e} v^{2}}{2}\right\rangle=\frac{4}{3} \pi R^{3} n\left\langle\frac{m_{e} v^{2}}{2}\right\rangle$. Time-averaged Joule heating power | 1.0 |
| $P_{\text {heat }}=\frac{1}{\tau} W_{\text {kin }}=\frac{1}{2 \tau} m_{e}\left\langle v^{2}\right\rangle\left(\frac{4}{3} \pi R^{3} n\right)$. | |
| The expression for current is taken from (2.6a), squared and averaged | |
| $\left\langle I^{2}\right\rangle=\left(e n \pi R^{2}\right)^{2}\left\langle v^{2}\right\rangle=\left(\frac{3 Q}{4 R}\right)^{2}\left\langle v^{2}\right\rangle$. | |

2.8 b	The oscillating current $I=I_{0} \sin \omega t=\pi R^{2} n e v_{0} \sin \omega t$ produces the heat in the resistance $R_{\text {heat }}$ equal to $P_{\text {heat }}=R_{\text {heat }}\left\langle I^{2}\right\rangle$, what together with results from (2.8a) leads to $R_{\text {heat }}=\frac{W_{\text {kin }}}{\tau I^{2}}=\frac{2 m_{e}}{3 \pi n e^{2} R \tau}=2.46 \Omega$.	1.0

$2.9 R_{\text {scat }}=\frac{P_{\text {scat }}}{\left\langle I^{2}\right\rangle}$ and $\left\langle v^{2}\right\rangle=\frac{1}{2} \omega_{\mathrm{p}}^{2} x_{0}^{2}$ yields $R_{\text {scat }}=\frac{Q^{2} x_{0}^{2} \omega_{\mathrm{p}}^{4}}{12 \pi \varepsilon_{0} c^{3}} \frac{16 R^{2}}{9 Q^{2}\left\langle v^{2}\right\rangle}=\frac{8 \omega_{0}^{2} R^{2}}{27 \pi \varepsilon_{0} c^{3}}=2.45 \Omega . \quad 1.0$

2.10a	Ohm's law for a $L C R$ serious circuit is $I_{0}=\frac{V_{0}}{\sqrt{\left(R_{\text {heat }}+R_{\text {scat }}\right)^{2}+\left(\omega L-\frac{1}{\omega C}\right)^{2}}}$. At the resonance frequency time-averaged voltage squared is $\left\langle V^{2}\right\rangle=Z_{R}^{2}\left\langle I^{2}\right\rangle=\left(R_{\text {heat }}+R_{\text {scat }}\right)^{2}\left\langle I^{2}\right\rangle$. And from (2.5b) $\left\langle V^{2}\right\rangle=\frac{1}{2} V_{0}^{2}=\frac{8}{9} R^{2} E_{0}^{2}$, so Ohm's law results in $\left\langle I^{2}\right\rangle=$ $\frac{8 R^{2} E_{0}^{2}}{9\left(R_{\text {heat }}+R_{\text {scat }}\right)^{2}}$. Now time-averaged power loses are $P_{\text {heat }}=R_{\text {heat }}\left\langle I^{2}\right\rangle=\frac{8 R_{\text {heat }} R^{2}}{9\left(R_{\text {heat }}+R_{\text {scat }}\right)^{2}} E_{0}^{2} \quad$ and $P_{\text {scat }}=\frac{8 R_{\text {scat }} R^{2}}{9\left(R_{\text {heat }}+R_{\text {scat }}\right)^{2}} E_{0}^{2}=\frac{R_{\text {scat }}}{R_{\text {heat }}}\left\langle P_{\text {heat }}\right\rangle$.	1.2
2.10b	Starting with the electric field amplitude $E_{0}=\sqrt{2 S /\left(\varepsilon_{0} c\right)}=27.4 \mathrm{kV} / \mathrm{m}$, we calculate $P_{\text {heat }}=6.82 \mathrm{nW}$ and $P_{\text {scat }}=6.81 \mathrm{nW}$.	0.3

Steam generation by light

Total number of nanoparticles in the vessel: $N_{\mathrm{np}}=h^{2} a n_{\mathrm{np}}=7.3 \times 10^{11}$. Then the total time-averaged Joule heating power: $P_{\mathrm{st}}=N_{\mathrm{np}} P_{\text {heat }}=4.98 \mathrm{~kW}$. This power goes
2.11a into the steam generation: $P_{\mathrm{st}}=\mu_{\mathrm{st}} L_{\mathrm{tot}}$, with $L_{\mathrm{tot}}=c_{\mathrm{wa}}\left(T_{100}-T_{\mathrm{wa}}\right)+L_{\mathrm{wa}}+$ $c_{\mathrm{st}}\left(T_{\mathrm{st}}-T_{100}\right)=2.62 \times 10^{6} \mathrm{~J} \mathrm{~kg}^{-1}$. Thus the mass of steam produced in second μ_{st} : $\mu_{\mathrm{st}}=\frac{P_{\mathrm{st}}}{L_{\mathrm{tot}}}=1.90 \times 10^{-3} \mathrm{~kg} \mathrm{~s}^{-1}$.
The power of light incident on the vessel $P_{\text {tot }}=h^{2} S=0.01 \mathrm{~m}^{2} \times 1 \mathrm{MW} \mathrm{m}^{-2}=$
2.11b 10.0 kW , and the power directed for steam production by nanoparticles is given in
2.11a. Thus $\eta=\frac{P_{\text {st }}}{P_{\text {tot }}}=\frac{4.98 \mathrm{~kW}}{10.0 \mathrm{~kW}}=0.498$.

[^0]: Inside the metallic particle in the steady state the electric field must be equal to 0 . The induced field (from 2.2 or 2.3) compensates the external field: $\boldsymbol{E}_{0}+\boldsymbol{E}_{\text {ind }}=0$, so $2.4 x_{\mathrm{p}}=\frac{3 \varepsilon_{0}}{\rho} E_{0}=\frac{3 \varepsilon_{0}}{e n} E_{0}$.

 Charge displaced through the $y z$-plane is the total charge of electrons in the cylinder of

