Solutions

3.1	The pressure is given by the hydrostatic pressure $p(x, z)=\rho_{\text {ice }} g(H(x)-z)$, which is zero at the surface.	0.3

outward force on a vertical slice at a distance x from the middle and of a given width Δy is obtained by integrating up the pressure times the area:

$$
F(x)=\Delta y \int_{0}^{H(x)} \rho_{\text {ice }} g(H(x)-z) \mathrm{d} z=\frac{1}{2} \Delta y \rho_{\text {ice }} g H(x)^{2}
$$

which implies that $\Delta F=F(x)-F(x+\Delta x)=-\frac{\mathrm{d} F}{\mathrm{~d} x} \Delta x=-\Delta y \rho_{\text {ice }} g H(x) \frac{\mathrm{d} H}{\mathrm{~d} x} \Delta x$.
This finally shows that

$$
S_{\mathrm{b}}=\frac{\Delta F}{\Delta x \Delta y}=-\rho_{\text {ice }} g H(x) \frac{\mathrm{d} H}{\mathrm{~d} x}
$$

Notice the sign, which must be like this, since S_{b} was defined as positive and $H(x)$ is a decreasing function of x.

To find the height profile, we solve the differential equation for $H(x)$:

$$
-\frac{S_{\mathrm{b}}}{\rho_{\text {ice }} g}=H(x) \frac{\mathrm{d} H}{\mathrm{~d} x}=\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} x} H(x)^{2}
$$

with the boundary condition that $H(L)=0$. This gives the solution:

$$
H(x)=\sqrt{\frac{2 S_{b} L}{\rho_{\text {ice }} g}} \sqrt{1-x / L}
$$

Which gives the maximum height $H_{\mathrm{m}}=\sqrt{\frac{2 S_{b} L}{\rho_{\text {ice }} g}}$.
Alternatively, dimensional analysis could be used in the following manner. First notice that $\mathcal{L}=\left[H_{\mathrm{m}}\right]=\left[\rho_{\text {ice }}^{\alpha} g^{\beta} \tau_{\mathrm{b}}^{\gamma} L^{\delta}\right]$. Using that $\left[\rho_{\rho_{\text {ice }}}\right]=\mathcal{M} \mathcal{L}^{-3},[g]=\mathcal{L} \mathcal{T}^{-2}, \quad\left[\tau_{b}\right]=$ $\mathcal{M} \mathcal{L}^{-1} \mathcal{T}^{-2}$, demands that $\mathcal{L}=\left[H_{\mathrm{m}}\right]=\left[\rho_{i}{ }^{\alpha} g^{\beta} \tau_{b}{ }^{\gamma} L^{\delta}\right]=\mathcal{M}^{\alpha+\gamma} \mathcal{L}^{-3 \alpha+\beta-\gamma+\delta} \mathcal{T}^{-2 \beta-2 \gamma}$, which again implies $\alpha+\gamma=0,-3 \alpha+\beta-\gamma+\delta=1,2 \beta+2 \gamma=0$. These three equations are solved to give $\alpha=\beta=-\gamma=\delta-1$, which shows that

$$
H_{\mathrm{m}} \propto\left(\frac{S_{\mathrm{b}}}{\rho_{\rho_{\mathrm{ice}}} g}\right)^{\gamma} L^{1-\gamma}
$$

Since we were informed that $H_{\mathrm{m}} \propto \sqrt{L}$, it follows that $\gamma=1 / 2$. With the boundary condition $H(L)=0$, the solution then take the form

$$
H(x) \propto\left(\frac{S_{\mathrm{b}}}{\rho_{\text {ice }} g}\right)^{1 / 2} \sqrt{L-x}
$$

The proportionality constant of $\sqrt{2}$ cannot be determined in this approach.

For the rectangular Greenland model, the area is equal to $A=10 L^{2}$ and the volume is found by integrating up the height profile found in problem 3.2b:
$V_{\mathrm{G}, \text { ice }}=(5 L) 2 \int_{0}^{L} H(x) \mathrm{d} x=10 L \int_{0}^{L}\left(\frac{\tau_{\mathrm{b}} L}{\rho_{\text {ice }} g}\right)^{1 / 2} \sqrt{1-x / L} \mathrm{~d} x=10 H_{\mathrm{m}} L^{2} \int_{0}^{1} \sqrt{1-\tilde{x}} \mathrm{~d} \tilde{x}$
3.2c

$$
=10 H_{\mathrm{m}} L^{2}\left[-\frac{2}{3}(1-\tilde{x})^{3 / 2}\right]_{0}^{1}=\frac{20}{3} H_{\mathrm{m}} L^{2} \propto L^{5 / 2}
$$

where the last line follows from the fact that $H_{\mathrm{m}} \propto \sqrt{L}$. Note that the integral need not be carried out to find the scaling with L. This implies that $V_{G, i c e} \propto{A_{G}}^{5 / 4}$ and the wanted exponent is $\gamma=5 / 4$.

According to the assumption of constant accumulation c the total mass accumulation rate from an area of width Δy between the ice divide at $x=0$ and some point at $x>0$ must equal the total mass flux through the corresponding vertical cross section at x. That is: $\rho c x \Delta y=\rho \Delta y H_{\mathrm{m}} v_{x}(x)$, from which the velocity is isolated:

$$
v_{x}(x)=\frac{c x}{H_{\mathrm{m}}}
$$

From the given relation of incompressibility it follows that

$$
\frac{\mathrm{d} v_{z}}{\mathrm{~d} z}=-\frac{\mathrm{d} v_{x}}{\mathrm{~d} x}=-\frac{c}{H_{\mathrm{m}}}
$$

Solving this differential equation with the initial condition $v_{z}(0)=0$, shows that:

$$
v_{z}(z)=-\frac{c z}{H_{\mathrm{m}}}
$$

Solving the two differential equations

$$
\frac{\mathrm{d} z}{\mathrm{~d} t}=-\frac{c z}{H_{\mathrm{m}}} \quad \text { and } \quad \frac{\mathrm{d} x}{\mathrm{~d} t}=\frac{c x}{H_{\mathrm{m}}}
$$

with the initial conditions that $z(0)=H_{\mathrm{m}}$, and $x(0)=x_{i}$ gives

$$
z(t)=H_{\mathrm{m}} \mathrm{e}^{-c t / H_{\mathrm{m}}} \quad \text { and } \quad x(t)=x_{i} \mathrm{e}^{c t / H_{\mathrm{m}}}
$$

3.5 This shows that $z=H_{\mathrm{m}} x_{i} / x$, meaning that flow lines are hyperbolas in the $x z$-plane.

Rather than solving the differential equations, one can also use them to show that

$$
\frac{\mathrm{d}}{\mathrm{~d} t}(x z)=\frac{\mathrm{d} x}{\mathrm{~d} t} z+x \frac{\mathrm{~d} z}{\mathrm{~d} t}=\frac{c x}{H_{\mathrm{m}}} z-x \frac{c z}{H_{\mathrm{m}}}=0
$$

which again implies that $x z=$ const. Fixing the constant by the initial conditions, again leads to the result that $z=H_{\mathrm{m}} x_{i} / x$.

At the ice divide, $x=0$, the flow will be completely vertical, and the t-dependence of z found in 3.5 can be inverted to find $\tau(z)$. One finds that $\tau(z)=\frac{H_{\mathrm{m}}}{c} \ln \left(\frac{H_{\mathrm{m}}}{z}\right)$.

The present interglacial period extends to a depth of 1492 m , corresponding to 11,700 year. Using the formula for $\tau(z)$ from problem 3.6 , one finds the following accumulation rate for the interglacial:

$$
c_{\mathrm{ig}}=\frac{H_{\mathrm{m}}}{11,700 \text { years }} \ln \left(\frac{H_{\mathrm{m}}}{H_{\mathrm{m}}-1492 \mathrm{~m}}\right)=0.1749 \mathrm{~m} / \text { year }
$$

The beginning of the ice age 120,000 years ago is identified as the drop in $\delta^{18} \mathrm{O}$ in figure 3.2 b at a depth of 3040 m . Using the vertical flow velocity found in problem 3.4 , on has $\frac{\mathrm{d} z}{z}=-\frac{c}{H_{\mathrm{m}}} \mathrm{d} t$, which can be integrated down to a depth of 3040 m , using a stepwise constant accumulation rate:

$$
\begin{aligned}
& H_{\mathrm{m}} \ln \left(\frac{H_{\mathrm{m}}}{H_{\mathrm{m}}-3040 \mathrm{~m}}\right)=-H_{\mathrm{m}} \int_{H_{\mathrm{m}}}^{H_{\mathrm{m}}-3040 \mathrm{~m}} \frac{1}{Z} \mathrm{~d} z \\
& =\int_{11,700 \text { year }}^{120,000 \text { year }} c_{\mathrm{ia}} \mathrm{~d} t+\int_{0}^{11,700 \text { year }} c_{\mathrm{ig}} \mathrm{~d} t \\
& =c_{\mathrm{ia}}(120,000 \text { year-11,700 year })+c_{\mathrm{ig}} 11,700 \text { year }
\end{aligned}
$$

Isolating form this equation leads to $c_{\mathrm{ia}}=0.1232$, i.e. far less precipitation than now.
3.7b

Reading off from figure $3.2 \mathrm{~b}: \delta^{18} \mathrm{O}$ changes from $-43,5 \%$ to $-34,5 \%$. Reading off from figure $3.2 \mathrm{a}, T$ then changes from $-40^{\circ} \mathrm{C}$ to $-28^{\circ} \mathrm{C}$. This gives $\Delta T \approx 12{ }^{\circ} \mathrm{C}$.

From the area A_{G} one finds that $L=\sqrt{A_{\mathrm{G}} / 10}=4.14 \times 10^{5} \mathrm{~m}$. Inserting numbers in the volume formula found in 3.2 c , one finds that:

$$
V_{\mathrm{G}, \mathrm{ice}}=\frac{20}{3} L^{5 / 2} \sqrt{\frac{2 S_{\mathrm{b}}}{\rho_{\mathrm{ice}} g}}=3.45 \times 10^{15} \mathrm{~m}^{3}
$$

This ice volume must be converted to liquid water volume, by equating the total masses, i.e. $V_{\mathrm{G}, \mathrm{wa}}=V_{\mathrm{G}, \text { ice }} \frac{\rho_{\text {ice }}}{\rho_{\mathrm{wa}}}=3.17 \times 10^{15} \mathrm{~m}^{3}$, which is finally converted to a sea level rise, as $h_{\mathrm{G}, \text { rise }}=\frac{V_{\mathrm{G}, \mathrm{wa}}}{A_{\mathrm{o}}}=8.79 \mathrm{~m}$.

Figure 3.S1 Geometry of the ice ball (white circle) with a test mass m (small gray circle).
The total mass of the ice is

$$
M_{\text {ice }}=V_{\mathrm{G}, \text { ice }} \rho_{\text {ice }}=3.17 \times 10^{18} \mathrm{~kg}=5.31 \times 10^{-7} m_{\mathrm{E}}
$$

The total gravitational potential felt by a test mass m at a certain height h above the surface of the Earth, and at a polar angle θ (cf. figure $3 . \mathrm{S} 1$), with respect to a rotated polar axis going straight through the ice sphere is found by adding that from the Earth with that from the ice:

$$
U_{\mathrm{tot}}=-\frac{G m_{\mathrm{E}} m}{R_{\mathrm{E}}+h}-\frac{G M_{\mathrm{ice}} m}{r}=-m g R_{E}\left(\frac{1}{1+h / R_{E}}+\frac{M_{i c e} / m_{E}}{r / R_{E}}\right)
$$

where $g=G m_{E} / R_{E}^{2}$. Since $h / R_{\mathrm{E}} \ll 1$ one may use the approximation given in the problem, $(1+\mathrm{x})^{-1} \approx 1-x, \quad|x| \ll 1$, to approximate this by

$$
U_{\mathrm{tot}} \approx-m g R_{E}\left(1-\frac{h}{R_{E}}+\frac{M_{\text {ice }} / m_{E}}{r / R_{E}}\right)
$$

Isolating h now shows that $h=h_{0}+\frac{M_{i c e} / m_{E}}{r / R_{E}} R_{E}$, where $h_{0}=R_{E}+U_{\text {tot }} /(m g)$. Using again that $h / R_{\mathrm{E}} \ll 1$, trigonometry shows that $r \approx 2 R_{\mathrm{E}}|\sin (\theta / 2)|$, and one has:

$$
h(\theta)-h_{0} \approx \frac{M_{\mathrm{ice}} / m_{\mathrm{E}}}{2|\sin (\theta / 2)|} R_{E} \approx \frac{1.69 \mathrm{~m}}{|\sin (\theta / 2)|}
$$

To find the magnitude of the effect in Copenhagen, the distance of 3500 km along the surface is used to find the angle $\theta_{\mathrm{CPH}}=\left(3.5 \times 10^{6} \mathrm{~m}\right) / R_{E} \approx 0.549$, corresponding to $h_{\mathrm{CPH}}-h_{0} \approx 6.25 \mathrm{~m}$. Directly opposite to Greenland corresponds to $\theta=\pi$, which gives $h_{\mathrm{OPP}}-h_{0} \approx 1.69 \mathrm{~m}$. The difference is then $h_{\mathrm{CPH}}-h_{\mathrm{OPP}} \approx 4.56 \mathrm{~m}$, where h_{0} has dropped out.

