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Problem 2.Van der Waals equation of state 
Solution 

Part А. Non-ideal gas equation of state 
A1.If 𝑉 = 𝑏is substituted into the equation of state, then the gas pressure turns infinite. It is obvious that this 

is the moment when all the molecules are tightly packed. Therefore, the parameter 𝑏 is approximately equal 

to the volume of all molecules, i.e. 

    𝑏 = 𝑁𝐴𝑑
3        (A1.1) 

A2.In the most general case thevan der Waals equation of state can be rewritten as 

   𝑃𝑐𝑉
3 −  𝑅𝑇𝑐 + 𝑏𝑃𝑐 𝑉

2 + 𝑎𝑉 − 𝑎𝑏 = 0    (A2.1). 

Since at the critical values of the gas parameters the straight line disappears, then, the solution of 

(A2.1) must have one real triple root, i.e. it can be rewritten as follows 

   𝑃𝑐(𝑉− 𝑉𝑐)
3 = 0       (A2.2). 

Comparing the coefficients of expression (A2.1) and (A2.2), the following set of equations is 

obtained 

 

3𝑃𝑐𝑉𝑐 = 𝑅𝑇𝑐 + 𝑏𝑃𝑐
3𝑃𝑐𝑉𝑐

2 = 𝑎

𝑃𝑐𝑉𝑐
3 = 𝑎𝑏

       (A2.3). 

Solution to the set (A2.3) is the following formulas for the van der Waals coefficients 

   𝑎 =
27𝑅2𝑇𝑐

2

64𝑃𝑐
        (A2.4), 

   𝑏 =
𝑅𝑇𝑐

8𝑃𝑐
        (A2.5). 

Alternative solution 

The critical parameters are achieved in the presence of an inflection point in the isotherm, at which 

the first and second derivatives are both zero. Therefore, they are defined by thefollowingconditions 

    
𝑑𝑃

𝑑𝑉
 
𝑇
= 0        (A2.6), 

and 

    
𝑑2𝑃

𝑑𝑉2
 
𝑇
= 0        (A2.7). 

Thus, the following set of equations is obtained 

   

 
 
 

 
 −

𝑅𝑇𝑐
 𝑉𝑐−𝑏 2

+
2𝑎

𝑉𝑐
3 = 0

2𝑅𝑇𝑐
 𝑉𝑐−𝑏 3

−
6𝑎

𝑉𝑐
4 = 0

 𝑃𝑐 +
𝑎

𝑉𝑐
2  𝑉𝑐 − 𝑏 = 𝑅𝑇𝑐

       (A2.8), 

which has the same solution (A2.4) and (A2.5). 

A3.Numericalcalculationsforwaterproduce the following result 

   𝑎𝑤 = 0.56
m6∙Pa

mole2
       (A3.1). 

   𝑏𝑤 = 3.1 ∙ 10−5
m3

mole
       (A3.2). 

A4.From equations (A1.4) and (A3.2) it is found that 

   𝑑𝑤 =  
𝑏

𝑁𝐴

3
= 3.7 ∙ 10−10m ≈ 4 ∙ 10−10m    (A4.1). 

 

Part B. Properties of gas and liquid 

B1.Usingtheinequality𝑉𝐺 ≫ 𝑏, the van der Waals equation of state can be written as 

    𝑝0 +
𝑎

𝑉𝐺
2 𝑉𝐺 = 𝑅𝑇       (B1.1), 

which has the following solutions 

   𝑉𝐺 =
𝑅𝑇

2𝑝0
 1± 1−

4𝑎𝑝0

𝑅2𝑇2
       (B1.2). 
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Smaller root in (B1.2) gives the volume in an unstable state on the rising branch of thevan der Waals 

isotherm. The volume of gas is given by the larger root, since at 𝑎 = 0an expression for the volume of an 

ideal gasshould be obtained, i.e. 

   𝑉𝐺 =
𝑅𝑇

2𝑝0
 1 + 1−

4𝑎𝑝0

𝑅2𝑇2
       (B1.3). 

For given values of the parameters the value
𝑎𝑝0
 𝑅𝑇 2

= 5.8 ∙ 10−3. It can therefore be assumed 

that
𝑎𝑝0
 𝑅𝑇 2

≪ 1, then (B1.3)takes the form 

   𝑉𝐺 ≈
𝑅𝑇

𝑝0
 1−

𝑎𝑝0

𝑅2𝑇2
 =

𝑅𝑇

𝑝0
−

𝑎

𝑅𝑇
      (B1.4). 

B2. For an ideal gas 

   𝑉𝐺0 =
𝑅𝑇

𝑝0
        (B2.1), 

hence, 

    
∆𝑉𝐺
𝑉𝐺0

 =
𝑉𝐺0−𝑉𝐺
𝑉𝐺0

=
1

2
 1− 1−

4𝑎𝑝0

𝑅2𝑇2
 ≈

𝑎𝑝0

𝑅2𝑇2
= 0.58%.  (B2.2) 

B3.Mechanical stability of a thermodynamic system is inpower provided that 

    
𝑑𝑃

𝑑𝑉
 
𝑇
< 0.        (B3.1) 

The minimum volume, in which the mattercan still exist in the gaseous state, corresponds to a point 

in which 

   𝑉𝐺𝑚𝑖𝑛 →  
𝑑𝑃

𝑑𝑉
 
𝑇
= 0       (B3.2). 

Using the van der Waals equation of state (B3.2) is written as 

    
𝑑𝑃

𝑑𝑉
 
𝑇
= −

𝑅𝑇

(𝑉−𝑏)2
+

2𝑎

𝑉3
= 0      (B3.3). 

From (B3.2) and (B3.3), and with the help of𝑉𝐺𝑚𝑖𝑛 ≫ 𝑏, it is found that 

   𝑉𝐺𝑚𝑖𝑛 =
2𝑎

𝑅𝑇
        (B3.4). 

Thus, 
𝑉𝐺

𝑉𝐺𝑚𝑖𝑛
=

𝑅2𝑇2

2𝑎𝑝0
= 86       (B3.5). 

B4. Usingtheinequality𝑃 ≪ 𝑎/𝑉2, the van der Waals equation of state is written as 

   
𝑎

𝑉𝐿
2  𝑉𝐿 − 𝑏 = 𝑅𝑇,       (B4.1) 

whose solution is  

   𝑉𝐿 =
𝑎

2𝑅𝑇
 1± 1−

4𝑏𝑅𝑇

𝑎
       (B4.2). 

In this case, the smaller root shouldbe taken, since at𝑇 → 0the liquid volume𝑉𝐿 = 𝑏 must be obtained 

according to (B4.1), i.e. 

   𝑉𝐿 =
𝑎

2𝑅𝑇
 1− 1−

4𝑏𝑅𝑇

𝑎
 ≈ 𝑏  1 +

𝑏𝑅𝑇

𝑎
 .    (B4.3). 

B5. Since (B4.3) givesthevolumeoftheonemoleofwaterits mass density is easily found as 

   𝜌𝐿 =
𝜇

𝑉𝐿
=

𝜇

𝑏 1+
𝑏𝑅𝑇

𝑎
 
≈

𝜇

𝑏
= 5.8 ∙ 102

kg

m3
    (B5.1). 

B6. Inaccordancewith (B4.3) the volume thermal expansion coefficient is derived as 

   𝛼 =
1

𝑉𝐿

∆𝑉𝐿

∆𝑇
=

𝑏𝑅

𝑎+𝑏𝑅𝑇
≈

𝑏𝑅

𝑎
= 4.6 ∙ 10−4К−1    (B6.1). 

B7.The heat, required to convert the liquid to gas, is used to overcome the intermolecular forces that create 

negative pressure 𝑎/𝑉2, therefore, 

   𝐸 = 𝐿𝜇 ≈  
𝑎

𝑉2
𝑑𝑉 = 𝑎  

1

𝑉𝐿
−

1

𝑉𝐺
 

𝑉𝐺

𝑉𝐿
     (B7.1), 

and using𝑉𝐺 ≫ 𝑉𝐿, (B7.1) yields

    𝐿 =
𝑎

𝜇𝑉𝐿
=

𝑎

𝜇𝑏  1+
𝑏𝑅𝑇

𝑎
 
≈

𝑎

𝜇𝑏
= 1.0 ∙ 106

J

kg
    (B7.2). 
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B8.Consider some water of volume𝑉. To make a monolayer of thickness 𝑑 out of it, the following work 

must be done 

    𝐴 = 2𝜎𝑆        (B8.1). 

Fabrication of the monomolecular layer may be interpreted as the evaporation of an equivalent 

volume of water which requires the following amount of heat 

    𝑄 = 𝐿𝑚        (B8.2), 

where the mass is given by 

    𝑚 = 𝜌𝑆𝑑        (B8.3). 

Using (A4.1a), (B5.1)and(B7.2), one finally gets 

    𝜎 =
𝑎

2𝑏2
𝑑𝑤 = 0.12 ∙ 10−2

N

m
      (B8.4). 

 

Part С. Liquid-gas systems 

C1.At equilibrium, the pressure in the liquid and gas should be equalat all depths. The pressure𝑝in the fluid 

at the depth ℎis related to the pressure of saturated vapor above the flat surface by 

   𝑝 = 𝑝0 + 𝜌𝐿𝑔ℎ       (C1.1). 

The surface tension creates additional pressure defined by the Laplace formula as 

   ∆𝑝𝐿 =
2𝜎

𝑟
        (C1.2). 

The same pressure𝑝inthefluidatthedepthℎ depends on the vapor pressure 𝑝ℎ over the curved liquid 

surface and its radiusofcurvature as 

   𝑝 = 𝑝ℎ +
2𝜎

𝑟
        (C1.3). 

Furthermore, the vapor pressure at different heights are related by 

   𝑝ℎ = 𝑝0 + 𝜌𝑆𝑔ℎ       (C1.4). 

Solving (C1.1)-(C1.4), it is found that 

   ℎ =
2𝜎

(𝜌𝐿−𝜌𝑆)𝑔𝑟
        (C1.5). 

Hence,the pressure difference sought is obtained as 

   ∆𝑝𝑇 = 𝑝ℎ − 𝑝0 = 𝜌𝑆𝑔ℎ =
2𝜎

𝑟

𝜌𝑆

𝜌𝐿−𝜌𝑆
≈

2𝜎

𝑟

𝜌𝑆

𝜌𝐿
.    (C1.6). 

Note that the vapor pressure over the convex surface of the liquid is larger than the pressure above 

the flat surface. 

C2.Let 𝑃𝑒be vapor pressure at a temperature 𝑇𝑒, and 𝑃𝑒 − ∆𝑃𝑒be vapor pressure at a temperature 𝑇𝑒 − ∆𝑇𝑒.  
In accordance with equation (3) from problem statement, whentheambient temperature falls by an amount of 

∆𝑇𝑒 the saturated vapor pressure changes by an amount 

    ∆𝑃𝑒 = 𝑃𝑒
𝑎

𝑏𝑅𝑇𝑒
2 ∆𝑇𝑒        (C2.1). 

In accordance with the Thomson formula obtained in part C1, the pressure of saturated vapor above 

the droplet increases by the amountof ∆𝑝𝑇. While a droplet is small in size, the vapor above its surface 

remains unsaturated. Whena droplet hasgrownuptoacertainminimumsize, thevaporaboveitssurface turns 

saturated. 

Since the pressure remains unchanged, the following condition must hold 

   𝑃𝑒 − ∆𝑃𝑒 + ∆𝑝𝑇 = 𝑃𝑒       (C2.2). 

Assuming the vapor is almost ideal gas, its density can be found as 

   𝜌𝑆 =
𝜇𝑃𝑒
𝑅𝑇𝑒

≪ 𝜌𝐿        (C2.3). 

From equations (C2.1)-(C2.3), (B5.1) and (C1.6) one finds 

   
2𝜎

𝑟

𝜇𝑃𝑒

𝑅𝑇𝑒 
𝜇

𝑏
 
= 𝑃𝑒

𝑎∆𝑇𝑒

𝑏𝑅𝑇𝑒
2       (C2.4). 

Thus, it is finally obtained that 

   𝑟 =
2𝜎𝑏2𝑇𝑒

𝑎∆𝑇𝑒
= 1.5 ∙ 10−8m      (C2.5). 

 


