
Problem 1 : Solution/marking scheme � Two Problems in Mechanics (10
points)

Part A. The Hidden Disk (3.5 points)

A1 (0.8 pt) Find an expression for b as a function of the quantities (1), the angle φ and
the tilting angle Θ of the base.

Solution A1: [0.8]

Geometric solution: use that torque with respect to point of contact is 0 ⇒ cen-
ter of gravity has to be vertically above point of contact.

sinφ =
D

b
0.3

sin Θ =
D

r1
0.3

Here D may be called another name. Solve this:

sinφ =
r1
b

sin Θ ⇒ b =
r1 sin Θ

sinφ
0.2

Alternative: Torque and forces with respect to another point: [0.8]
Correct equation for torque 0.3
Correct equation for force 0.3
Correct solution 0.2

A2 (0.5 pt) Find the equation of motion for ϕ. Express the moment of inertia IS of the
cylinder around its symmetry axis S in terms of T , b and the known quantities (1). You
may assume that we are only disturbing the equilibrium position by a small amount so
that ϕ is always very small.

Solution A2: [0.5]

Write some equation of the form ϕ̈ = −ω2ϕ 0.1

Writing an equation of the form ϕ = A cosωt is also correct.
Two solutions:

1. Kinetic energy: 1
2ISϕ̇

2 and potential energy: −bMg cosϕ. Total energy is con-
served, and di�erentiation w.r.t. time gives the equation of motion.

2. Angular equation of motion from torque, τ = ISϕ̈ = −Mgb sinϕ.

Correct equation (either energy conservation or torque equation of motion) 0.3
Final answer

T = 2π

√
IS
Mgb

⇒ IS =
MgbT 2

4π2
0.1
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(Derivation:

⇒ ϕ̈ = −bMg

IS
sinϕ ' −bgM

IS
ϕ

so that

ω2 =
bgM

IS

)

A3 (0.4 pt) Find an expression for the distance d as a function of b and the quantities
(1). You may also include r2 and h2 as variables in your expression, as they will be
calculated in subtask A.5.

Solution A3: [0.4]

Some version of the center of mass equation, e.g.

b =
dM2

M1 +M2
0.2

correct solution:

d =
bM

πh2r22(ρ2 − ρ1)
0.2

A4 (0.7 pt) Find an expression for the moment of inertia IS in terms of b and the known
quantities (1). You may also include r2 and h2 as variables in your expression, as they
will be calculated in subtask A.5.

Solution A4: [0.7]

correct answer for moment of inertia of homogeneous disk

I1 =
1

2
πh1ρ1r

4
1 0.2

Mass wrong -0.1
Factor 1/2 wrong in formula for moment of inertia of a disk -0.1
Correct answer for moment of inertia of `excess' disk:

I2 =
1

2
πh2(ρ2 − ρ1)r42 0.2

Using Steiner's theorem:

IS = I1 + I2 + d2πr22h2(ρ2 − ρ1) 0.1

correct solution:

IS =
1

2
πh1ρ1r

4
1 +

1

2
πh2(ρ2 − ρ1)r42 +

b2M2

πr22h2(ρ2 − ρ1)
0.2
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In terms of d rather than b gives 0.1pts rather than 0.2pts for the �nal answer: 0.1

IS =
1

2
πh1ρ1r

4
1 +

1

2
πh2(ρ2 − ρ1)r42 + d2πr22h2(ρ2 − ρ1)

A5 (1.1 pt) Using all the above results, write down an expression for h2 and r2 in terms
of b, T and the quantities (1). You may express h2 as a function of r2.

Solution A5: [1.1]

It is not clear how exactly students will attempt to solve this system of equations. It is
likely that they will use the following equation:

M = πr21h1ρ1 + πr22h2(ρ2 − ρ1) . 0.3

solve IS for r22:

r22 =
2

M − πr21h1ρ1

(
IS −

1

2
Mr21 − b2

M2

M − πr21h1ρ1

)
0.4

replace IS by T :

IS =
MgbT 2

4π2
0.1

solve correctly for r2:

r2 =

√
2

M − πr21h1ρ1

(
M
bgT 2

4π2
− 1

2
Mr21 − b2

M2

M − πr21h1ρ1

)
0.1

write down an equation for h2 along the lines of M = πr21ρ1h1 +πr22(ρ2−ρ1)h2 and solve
it correctly:

h2 =
M − πr21ρ1h1
πr22(ρ2 − ρ1)

0.2

Part B. Rotating Space Station (6.5 points)

B1 (0.5 pt) At what angular frequency ωss does the space station rotate so that the
astronauts experience the same gravity gE as on the Earth's surface?

Solution B1: [0.5]

An equation for the centrifugal force along the lines of

Fce = mω2r 0.1
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Balancing the forces, correct equation

gE = ω2
ssR 0.2

Correct solution
ωss =

√
gE/R 0.2

B2 (0.2 pt) Assuming that on Earth gravity is constant with acceleration gE , what
would be the angular oscillation frequency ωE that a person on Earth would measure?

Solution B2: [0.2]

Realize that result is independent of gE 0.1

Correct result:
ωE =

√
k/m 0.1

B3 (0.6 pt) What angular oscillation frequency ω does Alice measure on the space
station?

Solution B3: [0.6]

some version of the correct equation for force

F = −kx±mω2
ssx 0.2

getting the sign right
F = −kx+mω2

ssx 0.2

Find correct di�erential equation

mẍ+ (k −mω2
ss)x = 0 0.1

Derive correct result
ω =

√
k/m− ω2

ss 0.1

Using gE/R instead of ω2
ss is also correct.

B4 (0.8 pt) Derive an expression of the gravity gE(h) for small heights h above the
surface of the Earth and compute the oscillation frequency ω̃E (linear approximation is
enough). The radius of the Earth is given by RE .
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Solution B4: [0.8]

gE(h) = −GM/(RE + h)2 0.1

linear approximation of gravity:

gE(h) = −GM
R2

E

+ 2h
GM

R3
E

+ . . . 0.2

Realize that gE = GM/R2
E :

gE(h) = −gE + 2hgE/RE + . . . 0.1

Opposite sign is also correct, as long as it is opposite in both terms.
Realize what this means for force, i.e. that the constant term can be eliminated by shifting
the equilibrium point:

F = −kx+ 2xmgE/RE 0.2

Find correct di�erential equation

mẍ+ (k − 2mgE/RE)x = 0 0.1

correct result
ω̃E =

√
k/m− 2gE/RE 0.1

No points are deducted if student answers with ω̃E/(2π) because �oscillation frequency�
might also be interpreted as inverse period.

B5 (0.3 pt) For what radius R of the space station does the oscillation frequency ω
match the oscillation frequency ω̃E on the surface of the Earth? Express your answer in
terms of RE .

Solution B5: [0.3]

Write down equation
ω2
ss = 2gE/RE 0.1

Solve
R = RE/2 0.2

If GM/R2
E rather than gE is used, give only 0.1pt.

B6 (1.1 pt) Calculate the horizontal velocity vx and the horizontal displacement dx
(relative to the base of the tower, in the direction perpendicular to the tower) of the mass
at the moment it hits the �oor. You may assume that the height H of the tower is small,
so that the acceleration as measured by the astronauts is constant during the fall. Also,
you may assume that dx � H.
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Solution B6: [1.1]

There are several possible solutions.
Solution one � Using Coriolis force

• Velocity vx

Equation for Coriolis force with correct velocity:

FC(t) = 2mω2
ssRtωss = 2mω3

ssRt 0.1

Integrate this, or realize that it is like uniform acceleration for the velocity:

vx(t) = ω3
ssRt

2 0.2

plug in correct value for
t =

√
2H/ω2

ssR 0.2

overall correct result
vx = 2Hωss 0.1

• The displacement dx:

Integrate vx(t):

dx =
1

3
Rω3

sst
3 0.3

Instead of integrating, students may simply `average' by taking 1
2 of the �nal

velocity. This gives a factor of 1
2 instead of 1

3 . Deduct a total of 0.1 pts for this. -0.1

Plug in value for t

dx =
1

3
Rω3

ss(2H/ω
2
ssR)3/2 =

1

3
23/2H3/2R−1/2 =

1

3

√
8H3

R
0.2

Solution two � Using inertial frame This solution is similar to the way to solve B7,
but needs more complicated approximations than Solution one.

• vx
Here φ denotes the angle swept by the mass and α the angle the astronauts (and
tower) has rotated when the mass lands on the �oor, see

Initially the velocity of the mass in an inertial frame is vx = ωss(R−H). 0.1

When the mass lands, the x-direction has been rotated by φ so the new horizontal
velocity component is then

ωss(R−H) cosφ 0.1

(Student may also write cosα instead of cosφ, since dx � H.)

cosφ =
R−H
R

= 1− H

R
0.1

Transforming to the rotating reference frame, one needs to subtract ωssR. 0.1

Finally in the reference frame of the astronauts

vx = ωssR

(
1− H

R

)2

− ωssR ≈ ωssR

(
1− 2

H

R

)
− ωssR = −2ωssH 0.2

The sign of the velocity depend on the choice of reference direction, so a positive
sign is also correct.
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• dx
With the notation from the calculation of vx

dx = (α− φ)R 0.1

φ = arccos

(
1− H

R

)
α = ωsst

where t is the fall time of the mass, which is given by

t =

√
R2 − (R−H)2

ωss(R−H)
0.1

(see solution to B7)

Writing ξ ≡ H/R this means

dx =

[√
1− (1− ξ)2

1− ξ
− arccos(1− ξ)

]
R 0.3

which is a valid end answer to the problem. It is possible, but not necessary, to
approximate this for small ξ:

arccos(1− ξ) ≈
√

2ξ

(
1 +

ξ

12

)
which after insertion into the equation for dx and approximation of small ξ yields
the same result as in Solution one:

dx =
2

3

√
2H3

R

If this end answer misses the factor 2/3, deduct 0.1 points. -0.1

Solution three � Inertial frame with geometry trick
This is an alternative solution to obtain dx
The mass travels the distance l, and during the fall the space station rotates by φ, see
Figure 2. According to the intersecting chord theorem,

l2 = H(2R−H) 0.1

The rotated angle is φ = ωsst where

t =
l

R−H
0.1

is the fall time. Thus

φ =

√
H(2R−H)

R−H
0.1

d

R
= φ− arcsin

l

R
=

√
H(2R−H)

R−H
− arcsin

√
x(2− x) 0.1
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Figure 1: Notation for solution two

Figure 2: Notation for solution three.

Denote x ≡ H/R and y ≡
√
x(2− x). Since

arcsin y ≈ y +
y3

6

one gets

d

R
≈ y(1 + x)− y − y3/6 = y(x− y2/6) ≈ 2xy/3 ≈ 2x

√
2x/3 =

2

3

√
2H3

R

Final answer 0.1

B7 (1.3 pt) Find a lower bound for the height of the tower for which it can happen that
dx = 0.

Solution B7: [1.3]

The key is to use a non-rotating frame of reference. If the mass is released close enough
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to the center, its linear velocity will be small enough for the space station to rotate more
than 2π before it hits the ground.
The velocity is given by

v = ωss(R−H) 0.1

distance d that the mass �ies before hitting the space station

d2 = R2 − (R−H)2 0.1

use non-rotating frame of reference to obtain time t until impact

t = d/v =

√
R2 − (R−H)2

ωss(R−H)
0.1

Now there are several possible ways to relate H and the rotated angle φ of the space
station:
Solution one

t =
R sinφ

ωssR cosφ
0.2

This time must match t = φ/ωss. Obtain the equation

φ = tanφ 0.2

Realizing that there is an in�nite number of solutions. 0.2
This equation has one trivial solution φ = 0, next solution is slightly less than 3π/2 which
corresponds to the case H > R (and is thus not correct). The one that gives a lower
bound for H is the third solution

φ ≈ 5π/2

The equation φ = tanφ can be solved graphically or numerically to obtain a close value
(φ = 7.725 rad) which means

H/R = (1− cosφ) ≈ 0.871

Give points if the method is correct, depending on the value of H/R found, according to
these intervals: 0.4
0.85 ≤ H/R ≤ 0.88: 0.4 pts

0.5 ≤ H/R < 0.85: 0.3 pts

0 < H/R < 0.5 or H > 0.88: 0.2 pts

H = 0 or method is incorrect: 0 pts

Solution two
relation between H and rotated angle φ

R−H
R

= cosφ 0.2

obtain equation of the form

H

R
= 1− cos

(√
1− (1−H/R)2

1−H/R

)
0.2

Figure 3 gives a plot of f(x) = 1− cos

(√
1−(1−x)2
1−x

)
. The goal is to �nd an approximate

solution for the second intersection. The �rst intersection is discarded � it is introduced
because of cosφ = cos(−φ) and corresponds to a situation with H > R.
Realizing that there is an in�nite number of solutions. 0.2
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Figure 3: Plot of f(H/R) and H/R

Figure 4: Plot of g(x) and x

• introduce new variable x := 1−H/R, so that the equation becomes

x = cos(
√

1− x2/x) =: g(x)

• g(x) is then smaller than x up to the �rst solution. In particular it is negative in
some region (see �gure 4). Finding the third zero thus gives a lower bound for the
solution: √

1− x2
x

= 5π/2

• give lower bound

x = 1/
√

25π2/4 + 1⇒ H = R(1− 1/
√

25π2/4 + 1) ≈ 0.874

Note: the actual result is H/R = 0.871 . . ..

Use the same points for the numerical answer as was mentioned in solution one. 0.4

If the student plots f rather than g, �nd solution to f = 1: is equivalent to the
solution above. Give same number of points.

It is also possible to use cos
(√

1−x2

x

)
= sin(1/x).

B8 (1.7 pt) Alice pulls the mass a distance d downwards from the equilibrium point
x = 0, y = 0, and then lets it go (see �gure 4).
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• Give an algebraic expression of x(t) and y(t). You may assume that ωssd is small.

• Sketch the trajectory (x(t), y(t)), marking all important features such as amplitude.

Solution B8: [1.7]

Note: we did not specify the overall sign of the Coriolis force. Give same amount
of points if using opposite convention, but it has to be consistent! Otherwise: subtract
0.1pt for each instance of inconsistency -0.1.
Students are allowed to express everything in terms of ω, they don't need to write√
k/m− ω2

ss explicitly. Deduct 0.1pt however if they use k/m instead of ω. -0.1.

Realize that y(t) is standard harmonic oscillation:

y(t) = A cosωt+B 0.1

Give correct constants from initial conditions

y(t) = −d cosωt 0.2

Correct expression for vy(t):
vy(t) = −dω sinωt 0.1

Coriolis force in x-direction

Fx(t) = 2mωssvy(t) = −2mωssdω sinωt 0.2

Realize that this implies that x(t) is also a harmonic oscillation. . . 0.1

. . . but with a constant movement term superimposed: vt 0.1

getting the correct amplitude:

A =
2ωssd

ω
0.1

Correct answer with correct initial conditions:

x(t) =
2ωssd

ω
sinωt− 2ωssdt 0.2

Sketch:

x

y

-d

d

A

B 4πωssd
ω

C
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Correct qualitative sketch:
periodic motion 0.1

overall constant movement 0.1

B): cusps 0.1

And additionally correct quantitative sketch:

A)+B): peaks and cusps are at y = ±d 0.1

C): cusps are at distance ∆x =
4πωssd

ω
from each other 0.2
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