Planetary Physics (10 points)

Part A. Mid-ocean ridge (5.0 points)

A. 1 (0.8 points)

Figure 1
Let h^{\prime} be the height of the column of oil (see Fig. 1). Then pressure at depth h below the water surface must be $p_{h}=\rho_{0} g h=\rho_{\text {oil }} g h^{\prime}$, from where $h^{\prime}=\frac{\rho_{0}}{\rho_{\text {oil }}} h$. Horizontal force on the plate $F_{x}=F_{1}-F_{0}$, where the force due to new fluid is $F_{1}=\frac{\rho_{\text {oil }} g h^{\prime}}{2} \cdot h^{\prime} w$ and the force due to water is $F_{0}=\frac{\rho_{0} g h}{2} \cdot h w$.

Combining all the equation above, we get

$$
F_{x}=\left(\frac{\rho_{0}}{\rho_{\mathrm{oi}}}-1\right) \frac{\rho_{0} g h^{2} w}{2} .
$$

This force acts on the right plate to the right.

A. 2 (0.6 points)

Consider a rectangular mass element of the crust. Since relation $l(T)=l_{1}\left[1-k_{l}\left(T_{1}-T\right) /\left(T_{1}-T_{0}\right)\right]$ holds for all three dimensions of the solid, its volume V satisfies

$$
V=V_{1}\left(1-k_{l} \frac{T_{1}-T}{T_{1}-T_{0}}\right)^{3}
$$

where V_{1} is the volume at $T=T_{1}$. If the mass of the element is m, density is then

$$
\rho(T)=\frac{m}{V}=\frac{m}{V_{1}}\left(1-k_{l} \frac{T_{1}-T}{T_{1}-T_{0}}\right)^{-3}=\rho_{1}\left(1-k_{l} \frac{T_{1}-T}{T_{1}-T_{0}}\right)^{-3} .
$$

Since $k_{l} \ll 1$, this can be approximated as

$$
\rho(T) \approx \rho_{1}\left(1+3 k_{l} \frac{T_{1}-T}{T_{1}-T_{0}}\right),
$$

so that $k=3 k_{l}$.

A. 3 (1.1 points)

Since mantle behaves like a fluid in hydrostatic equilibrium, pressure $p(x, z)$ at $z=h+D$ must be the same for all x. Therefore,

$$
p(0, h+D)=p(\infty, h+D) .
$$

Similarly, we must have

$$
p(0,0)=p(\infty, 0) .
$$

Hence, the change in pressure between $z=0$ and $z=\infty$ must be the same at both $x=0$ and $x=\infty$. At the ridge axis

$$
p(0, h+D)-p(0,0)=\rho_{1} g(h+D),
$$

while far away

$$
p(\infty, h+D)-p(\infty, 0)=\rho_{0} g h+\int_{h}^{h+D} \rho(T(\infty, z)) g \mathrm{~d} z .
$$

Since the temperature of the crust at $x=\infty$ depends linearly on height, after applying the relevant temperature boundary conditions,

$$
T(\infty, z)=T_{0}+\left(T_{1}-T_{0}\right) \frac{z-h}{D}
$$

From all the equations above and by using the density formula given in the problem text,

$$
\rho_{1} g(h+D)=\rho_{0} g h+\int_{h}^{h+D} \rho_{1}\left(1+k \frac{T_{1}-T_{0}-\left(T_{1}-T_{0} \frac{z-h}{D}\right.}{T_{1}-T_{0}}\right) g \mathrm{~d} z
$$

from where we straightforwardly obtain

$$
D=\frac{2}{k}\left(1-\frac{\rho_{0}}{\rho_{1}}\right) h .
$$

A. 4 (1.6 points)

The net horizontal force on the half of the ridge is the difference between the pressure forces acting at $x=0$ and $x=\infty$:

$$
F=L \int_{0}^{h+D} p(0, z) \mathrm{d} z-L \int_{0}^{h} p(\infty, z) .
$$

From considerations of the previous question, pressure at $x=0$ is

$$
p(0, z)=p(0,0)+\rho_{1} g z,
$$

while very far away

$$
p(\infty, z)=p(\infty, 0)+\rho_{0} g z
$$

The equations above can be combined into

$$
F=L \int_{0}^{h+D}\left(p(0,0)+\rho_{1} g z\right) \mathrm{d} z-L \int_{0}^{h}\left(p(\infty, 0)+\rho_{0} g z\right) \mathrm{d} z .
$$

After a straightforward integration and using $p(0,0)=p(\infty, 0)$,

$$
F=L p(0,0) D+L \rho_{1} g \frac{(h+D)^{2}}{2}-L \rho_{0} g \frac{h^{2}}{2} .
$$

Since $k \ll 1$, and $D \propto k^{-1}$, the term with $D^{2} \propto k^{-2}$ is of the leading order, hence, after substituting the result of A.3, the required answer is

$$
F \approx \frac{2 g L h^{2}\left(\rho_{1}-\rho_{0}\right)^{2}}{k^{2} \rho_{1}}
$$

A. 5 (0.9 points)

Method 1: dimensional analysis. The timescale τ is expected to depend only on density of the crust ρ_{1}, its specific heat c, thermal conductivity κ and thickness D. Hence, we can write

$$
\tau=A \rho_{1}^{\alpha} c^{\beta} \kappa^{\gamma} D^{\delta},
$$

where A is a dimensionless constant. We will obtain the powers $\alpha-\delta$ via dimensional analysis.
Define the symbols for different dimensions: L for length, M for mass, T for time and Θ for temperature. Then $\tau, \rho_{1}, c, \kappa$ and D have dimensions $\mathrm{T}, \mathrm{ML}^{-3}, \mathrm{~L}^{2} \mathrm{~T}^{-2} \Theta^{-1}, \mathrm{MLT}^{-3} \Theta^{-1}$ and L , respectively. The resulting set of linear equations to balance the powers of length, mass, time and temperature, respectively, is

$$
\left\{\begin{array}{l}
0=-3 \alpha+2 \beta+\gamma+\delta, \\
0=\alpha+\gamma, \\
1=-2 \beta-3 \gamma, \\
0=-\beta-\gamma .
\end{array}\right.
$$

This gives $\alpha=\beta=1, \gamma=-1, \delta=2$. Hence,

$$
\tau=A \frac{c \rho_{1} D^{2}}{\kappa} .
$$

Method 2: scale analysis. Consider a piece of crust of area S. Heat flux that has to be transmitted through the crust is of order $Q \sim c \rho_{1} S D \Delta T$, where $\Delta T=T_{1}-T_{0}$. On the other hand, the law of thermal conductivity gives that $\kappa \frac{\Delta T}{D} \sim \frac{Q}{S \tau}$.

From the two equations, $c \rho_{1} S D \Delta T \sim S \tau \kappa \frac{\Delta T}{D}$, from where we get that τ is independent of ΔT and

$$
\tau \sim \frac{c \rho_{1} D^{2}}{\kappa} .
$$

Part B. Seismic waves in a stratified medium (5.0 points)

B. 1 (1.5 points)

Seismic waves in this problem can be treated by using ray theory. Namely, their propagation is described by the Snell's law of refraction

$$
n(0) \sin \theta_{0}=n(z) \sin \theta,
$$

where the refractive index is

$$
n(z)=\frac{c}{v(z)}=\frac{c}{v_{0}\left(1+\frac{z}{z_{0}}\right)}
$$

and c denotes the seismic wave speed in a material with refractive index $n=1$. From the two equations above we have

$$
v_{0}\left(1+\frac{z}{z_{0}}\right) \sin \theta_{0}=v_{0} \sin \theta
$$

Method 1. Since this describes an arc of a circle, we have that at $\theta=\frac{\pi}{2}, z=R-R \sin \theta_{0}$ (Fig. 2), giving

$$
\left(1+\frac{R-R \sin \theta_{0}}{z_{0}}\right) \sin \theta_{0}=1
$$

from where the circle radius $R=\frac{z_{0}}{\sin \theta_{0}}$. From simple geometry we get

$$
x_{1}\left(\theta_{0}\right)=2 R \cos \theta_{0},
$$

leading to

$$
x_{1}\left(\theta_{0}\right)=2 z_{0} \cot \theta_{0}
$$

i.e. $A=2 z_{0}$ and $b=1$.

Figure 2

Method 2. Implicitly differentiating $v_{0}\left(1+\frac{z}{z_{0}}\right) \sin \theta_{0}=v_{0} \sin \theta$ gives

$$
\frac{\mathrm{d} z}{z_{0}} \sin \theta_{0}=\cos \theta \mathrm{d} \theta
$$

An infinitesimal ray path length $\mathrm{d} l$ is related to the change in the vertical coordinate via

$$
\mathrm{d} z=\mathrm{d} l \cos \theta
$$

giving

$$
\mathrm{d} l=\frac{z_{0}}{\sin \theta_{0}} \mathrm{~d} \theta
$$

This is an equation of an arc of a circle of radius $R=\frac{z_{0}}{\sin \theta_{0}}$
Alternatively, instead of considering an infinitesimal ray path length $\mathrm{d} l$, one can obtain the answer by writing

$$
\cot \theta=\frac{\mathrm{d} z}{\mathrm{~d} x}=\frac{\mathrm{d} z}{\mathrm{~d} \theta} \frac{\mathrm{~d} \theta}{\mathrm{~d} x} .
$$

The first derivative can be eliminated via Snell's law, leading to

$$
\cot \theta=\frac{z_{0} \cos \theta}{\sin \theta_{0}} \frac{\mathrm{~d} \theta}{\mathrm{~d} x}
$$

which can be integrated to get

$$
x_{1}=-\frac{z_{0}}{\sin \theta_{0}} \int_{\text {start }}^{\text {end }} d \cos \theta=\frac{2 z_{0} \cos \theta_{0}}{\sin \theta_{0}}
$$

where we used Snell's law again to get that the ray has $\cos \theta=-\cos \theta_{0}$ at the point where it reaches the surface.

B. 2 (1.5 points)

In two dimensions, $\frac{E}{\pi} \mathrm{~d} \theta_{0}$ is the energy carried by rays that are emitted within interval $\left[\theta_{0}, \theta_{0}+\mathrm{d} \theta_{0}\right.$). On the other hand, the energy carried by rays that arrive at $[x, x+\mathrm{d} x)$ is $\varepsilon \mathrm{d} x$. Therefore,

$$
\varepsilon=\frac{E}{\pi}\left|\frac{\mathrm{~d} \theta_{0}}{\mathrm{~d} x}\right| .
$$

Using the result of question B.1,

$$
\frac{\mathrm{d} x}{\mathrm{~d} \theta_{0}}=-\frac{A b}{\sin ^{2}\left(b \theta_{0}\right)}=-A b\left(1+\cot ^{2}\left(b \theta_{0}\right)\right)=-\frac{b\left(A^{2}+x^{2}\right)}{A} .
$$

Hence,

$$
\varepsilon(x)=\frac{E A}{\pi b\left(A^{2}+x^{2}\right)}=\frac{2 E z_{0}}{\pi\left(4 z_{0}^{2}+x^{2}\right)} .
$$

This function is plotted in Fig. 3.

Figure 3. Plot of the function $\varepsilon(x)$.

B. 3 (2.0 points)

Define $x_{-}=x_{1}\left(\theta_{0}-\frac{\delta \theta_{0}}{2}\right)$ and $x_{+}=x_{1}\left(\theta_{0}+\frac{\delta \theta_{0}}{2}\right)$. To the leading order in $\delta \theta_{0}, x_{-} \approx x_{+} \approx x_{1}\left(\theta_{0}\right)$. With each reflection of the signal, the horizontal distance between the points where the edges of the signal reflect increases by $\left|x_{+}-x_{-}\right|=x_{-}-x_{+}$. When moving along the positive x-axis, these zones get wider until they overlap. If this happens after N reflections, then

$$
N \approx \frac{x_{1}\left(\theta_{0}\right)}{x_{-}-x_{+}},
$$

where the approximate sign tends to equality as $\delta \theta_{0} \rightarrow 0$.
The position where the zones start to overlap is at $x_{\max }=N x_{1}\left(\theta_{0}\right)$. Therefore,

$$
x_{\max }=\frac{x_{1}\left(\theta_{0}\right)^{2}}{x_{1}\left(\theta_{0}-\frac{\delta \theta_{0}}{2}\right)-x_{1}\left(\theta_{0}+\frac{\delta \theta_{0}}{2}\right)} .
$$

Since $\delta \theta_{0} \ll \theta_{0}$, we can approximate

$$
x_{1}\left(\theta_{0}-\frac{\delta \theta_{0}}{2}\right)-x_{1}\left(\theta_{0}+\frac{\delta \theta_{0}}{2}\right) \approx-\frac{\mathrm{d} x_{1}\left(\theta_{0}\right)}{\mathrm{d} \theta_{0}} \delta \theta_{0}=\frac{A b}{\sin ^{2}\left(b \theta_{0}\right)} \delta \theta_{0} .
$$

Combining the last two equations and substituting the $x_{1}\left(\theta_{0}\right)$ expression gives

$$
x_{\max }=\frac{A \cos ^{2}\left(b \theta_{0}\right)}{b \delta \theta_{0}}=\frac{2 z_{0} \cos ^{2} \theta_{0}}{\delta \theta_{0}} .
$$

