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Electrostatic lens (10 points)

Part A. Electrostatic potential on the axis of the ring (1 point)

A.1 (0.3 points)
The linear charge density of the ring is _ = 𝑞/(2𝜋𝑅). All the points of the ring are situated a distance√
𝑅2 + 𝑧2 away from point A. Integrating over the whole ring we readily obtain:

Φ (𝑧) = 𝑞

4𝜋Y0
1

√
𝑅2 + 𝑧2

.

A.2 (0.4 points)
Using an expansion in powers of 𝑧 we obtain:

Φ(𝑧) = 𝑞

4𝜋Y0
1

√
𝑅2 + 𝑧2

=
𝑞

4𝜋Y0𝑅
1√︃

1 +
(
𝑧
𝑅

)2 ≈ 𝑞

4𝜋Y0𝑅

(
1 − 𝑧2

2𝑅2

)
.

A.3 (0.2 points)
The potential energy of the electron is 𝑉 (𝑧) = −𝑒Φ(𝑧). The force acting on the electron is

𝐹 (𝑧) = −d𝑉 (𝑧)
d𝑧

= +𝑒 dΦ
d𝑧

= − 𝑞𝑒

4𝜋Y0𝑅3𝑧.

If this is a restoring force, it should be negative for positive 𝑧. Thus, 𝑞 > 0.

A.4 (0.1 points)
The equation of motion for an electron is

𝑚 ¥𝑧 + 𝑞𝑒

4𝜋Y0𝑅3𝑧 = 0

(here dots denote time derivatives). We therefore get

𝜔 =

√︂
𝑞𝑒

4𝜋𝑚Y0𝑅3 .
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Part B. Electrostatic potential in the plane of the ring (1.7 points)

B.1 (1.5 points)
There are two different ways to solve this problem: (i) using direct integration; (ii) using Gauss’s
law and the result of part A.

Figure 1: Calculating electrostatic potential in the plane of the ring through direct integration.

(i) Direct integration. We will follow the notations of Figure 1. Since the potential has cylin-
drical symmetry, let the point B, where we calculate the potential, be on the 𝑥-axis. Let

|OB| = 𝑟 ; |OC| = 𝑅.

Thus:
|BC|2 = 𝑅2 + 𝑟 2 − 2𝑅𝑟 cos𝜙.

Electrostatic potential created by ring element d𝜙 at the point B:

dΦ =
1

4𝜋Y0
_𝑅 d𝜙√︁

𝑅2 + 𝑟 2 − 2𝑅𝑟 cos𝜙
=

1
4𝜋Y0

_ d𝜙√︃
1 + 𝑟 2

𝑅2 − 2 𝑟
𝑅
cos𝜙

.

Using the expansion given in the formulation of the problem for Y = −1/2 we have:

dΦ ≈ _ d𝜙
4𝜋Y0

[
1 − 1

2

(
𝑟 2

𝑅2 − 2
𝑟

𝑅
cos𝜙

)
+ 3
8

(
𝑟 2

𝑅2 − 2
𝑟

𝑅
cos𝜙

)2]
.

Ignoring the terms of the order 𝑟 3 and 𝑟 4 we get:

dΦ ≈ _ d𝜙
4𝜋Y0

[
1 + 𝑟

𝑅
cos𝜙 + 𝑟 2

𝑅2

(
3
2
cos2 𝜙 − 1

2

)]
.

Integrating over all angles we finally obtain:

Φ(𝑟 ) = _

4𝜋Y0

ˆ 2𝜋

0

[
1 + 𝑟

𝑅
cos𝜙 + 𝑟 2

𝑅2

(
3
2
cos2 𝜙 − 1

2

)]
d𝜙.
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Φ(𝑟 ) = 𝑞

4𝜋Y0𝑅

(
1 + 𝑟 2

4𝑅2

)
.

From here, comparing with the expression Φ(𝑟 ) = 𝑞(𝛼 + 𝛽𝑟 2), we obtain

𝛽 =
1

16𝜋Y0𝑅3 .

(ii) Gauss’s law.

Figure 2: Calculating electrostatic potential in the plane of the ring via Gauss’s law.

Let us analyze a small cylinder of radius 𝑟 . The center of the cylinder coincides with the center
of the ring. In part A we analyzed the potential along the 𝑧-axis, while in this part we analyze the
potential along the radius 𝑟 . For any 𝑧 ≪ 𝑅 and 𝑟 ≪ 𝑅 the potential has an expression:

Φ(𝑧, 𝑟 ) = 𝑞

4𝜋Y0𝑅

(
1 − 𝑧2

2𝑅2

)
+ 𝑞𝛽𝑟 2.

The lowest order terms are quadratic in 𝑟 and 𝑧. Due to reflection symmetry the potential does
not contain terms of the type 𝑟𝑧. This, for example, immediately gives us 𝛼 = 1/(4𝜋Y0𝑅). Thus, for
small 𝑟 and 𝑧 electric fields in the radial and axial directions are:

E𝑧 (𝑧, 𝑟 ) = + 𝑞

4𝜋Y0𝑅3𝑧, E𝑟 (𝑧, 𝑟 ) = −2𝑞𝛽𝑟 .

Applying Gauss’s law to the cylinder we obtain:
˛

®E · d®𝑆 = 0 ⇒
ˆ

side

®E · d®𝑆 +
ˆ

base

®E · d®𝑆 = 0.

The second integral is: ˆ

base

®E · d®𝑆 = 2𝜋𝑟 2E𝑧 (𝑧, 𝑟 ) =
𝑞𝑧𝑟 2

2Y0𝑅3 .

The first integral is: ˆ

side

®E · d®𝑆 = 4𝜋𝑟𝑧E𝑟 (𝑧, 𝑟 ) = −8𝜋𝑞𝛽𝑟 2𝑧.
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Gauss’s theorem thus gives:
𝑞𝑧𝑟 2

2Y0𝑅3 − 8𝜋𝑞𝛽𝑟 2𝑧 = 0.

This immediately yields

𝛽 =
1

16𝜋Y0𝑅3 ,

which agrees with the result obtained via direct integration.

B.2 (0.2 points)
The potential of the electron is 𝑉 (𝑟 ) = −𝑒Φ(𝑟 ). Force acting on the electron in the 𝑥𝑦 plane is

𝐹 (𝑟 ) = −d𝑉 (𝑟 )
d𝑟

= +𝑒 dΦ(𝑟 )
d𝑟

=
𝑞𝑒

8𝜋Y0𝑅3𝑟 .

To have oscilations we need the force to be negative for 𝑟 > 0. Thus, 𝑞 < 0.

Part C. The focal length of the idealized electrostatic lens (2.3 points)

C.1 (1.3 points)

Let us consider an electron with the velocity 𝑣 =
√︁
2𝐸/𝑚 at a distance 𝑟 from the “optical” axis

(Figure 2 of the problem). The electron crosses the “active region” of the lens in time

𝑡 =
𝑑

𝑣
.

The equation of motion in the 𝑟 direction:

𝑚¥𝑟 = 2𝑒𝑞𝛽𝑟 .

During the time the electron crosses the active region of the lens, the electron acquires radial ve-
locity:

𝑣𝑟 =
2𝑒𝑞𝛽𝑟
𝑚

𝑑

𝑣
< 0.

The lens will be focusing if 𝑞 < 0. The time it takes for an electron to reach the “optical” axis is:

𝑡 ′ =
𝑟

|𝑣𝑟 |
= − 𝑚𝑣

2𝑒𝑞𝛽𝑑
.

During this time the electron travels in the 𝑧-direction a distance

Δ𝑧 = 𝑡 ′𝑣 = − 𝑚𝑣2

2𝑒𝑞𝛽𝑑
= − 𝐸

𝑒𝑞𝑑𝛽
.

Δ𝑧 does not depend on the radial distance 𝑟 , therefore all electron will cross the “optical” axis (will
be focused) in the same spot. Thus,

𝑓 = − 𝐸

𝑒𝑞𝑑𝛽
.
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C.2 (0.8 points)

Figure 3: Focusing of electrons.

Let us consider an electron emitted an an angle 𝛾 to the optical axis (Figure 3). Its initial velocity in
the radial direction is:

𝑣𝑟 ;0 = 𝑣 sin𝛾 ≈ 𝑣𝛾 ≈ 𝑣
𝑟

𝑏
,

where 𝑟 is the radial distance of the electron when it reaches the plane of the ring. The velocity in
the 𝑧-direction is

𝑣𝑧 = 𝑣 cos𝛾 ≈ 𝑣 .

For small angles 𝛾 the additional velocity in the 𝑟 -direction acquired in the “active region” is the
same as in part C.1. Thus, the radial velocity after crossing the active region is

𝑣𝑟 = 𝑣
𝑟

𝑏
+ 2𝑒𝑞𝛽𝑟

𝑚

𝑑

𝑣
,

where the first term is positive and the second term is negative, since 𝑞 < 0. If the electrons are
focused, then 𝑣𝑟 < 0 (this can be verified after obtaining the final result). The electron will reach
the optical axis in time

𝑡 ′ =
𝑟

|𝑣𝑟 |
= − 𝑟

2𝑒𝑞𝛽𝑟
𝑚

𝑑
𝑣
+ 𝑣 𝑟

𝑏

= − 1
2𝑒𝑞𝛽
𝑚

𝑑
𝑣
+ 𝑣

𝑏

.

During this time it will travel a distance

𝑐 = 𝑡 ′𝑣 = − 1
2𝑒𝑞𝛽
𝑚

𝑑
𝑣2
+ 1

𝑏

= − 1
𝑒𝑞𝛽𝑑

𝐸
+ 1

𝑏

.

C.3 (0.2 pt)
From the previous answer we obtain:

1
𝑏
+ 1
𝑐
= −𝑒𝑞𝛽𝑑

𝐸
.
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Comparing with the answer of C.1 we immediately obtain

1
𝑏
+ 1
𝑐
=

1
𝑓
,

i.e. the equation of a thin optical lens is valid for an electrostatic lens as well.

Part D. The ring as a capacitor (3 points)

D.1 (2.0 points)

Figure 4: Calculation of the capacitance of the ring.

Let us sub-divide the entire ring into two parts: a part corresponding to the angle 2𝛼 ≪ 1, and the
rest of the ring, as shown in Figure 4. While the angle is small in comparison to 1, let us assume
that the length of the first part, 𝛼𝑅, is still large compared to 𝑎 (𝛼𝑅 ≫ 𝑎). Let us calculate the
electrostatic potential Φ at point K. It it a sum of two terms: the first one produced by the cut-out
part with an angle 2𝛼 (contribution Φ1) and the second one originating from the rest of the ring
(contribution Φ2).

Contribution Φ1. Since 𝛼 ≪ 1, we can neglect the curvature of the cylinder that is cut out from
the ring. The linear charge density on the ring is _ =

𝑞

2𝜋𝑅 . The potential at the center of the cylinder
is then given by an integral:

Φ1 = 2
1

4𝜋Y0
𝑞

2𝜋𝑅

ˆ 𝛼𝑅

0

d𝑥
√
𝑥2 + 𝑎2

=
𝑞

4𝜋2Y0𝑅

ˆ 𝛼𝑅

0

d(𝑥/𝑎)√︁
1 + (𝑥/𝑎)2

=
𝑞

4𝜋2Y0𝑅

ˆ 𝛼𝑅/𝑎

0

d𝑦√︁
1 + 𝑦2

.

Using the integral provided in the description of the problem we get:

Φ1 =
𝑞

4𝜋2Y0𝑅
ln

(
𝑦 +

√︁
1 + 𝑦2

)���𝛼𝑅/𝑎
0

=
𝑞

4𝜋2Y0𝑅
ln ©«𝛼𝑅𝑎 +

√︄
1 +

(
𝛼𝑅

𝑎

)2ª®¬ .
As 𝛼𝑅 ≫ 𝑎,

Φ1 ≈
𝑞

4𝜋2Y0𝑅
ln

(
2𝛼𝑅
𝑎

)
.
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Figure 5: Calculation of the capacitance of the ring

Contribution Φ2. In this case we can neglect the thickness 𝑎. Using the cosine theorem we can
derive the distance between points K and L of Figure 5:

|KL| = 2𝑅 sin
𝜙

2
.

The contribution Φ2 can then be written as an integral:

Φ2 = 2
𝑞

2𝜋
1

4𝜋Y0

ˆ 𝜋

𝛼

d𝜙

2𝑅 sin 𝜙

2

=
𝑞

8𝜋2Y0𝑅

ˆ 𝜋

𝛼

d𝜙

sin 𝜙

2

=
𝑞

4𝜋2Y0𝑅

ˆ 𝜋

𝛼

d
(
𝜙

2

)
sin 𝜙

2

=
𝑞

4𝜋2Y0𝑅

ˆ 𝜋/2

𝛼/2

d𝜒
sin 𝜒

.

Using the integral from the formulation of the problem, we calculate:

ˆ 𝜋/2

𝛼/2

d𝜒
sin 𝜒

= − ln
(
cos 𝜒 + 1
sin 𝜒

)����𝜋/2
𝛼/2

= ln
(
cos𝛼/2 + 1
sin𝛼/2

)
≈ ln

(
4
𝛼

)
for 𝛼 ≪ 1. Therefore

Φ2 ≈
𝑞

4𝜋2Y0𝑅
ln

(
4
𝛼

)
.

The total potential and capacitance. The total potential is the sum of Φ1 and Φ2:

Φ = Φ1 + Φ2 =
𝑞

4𝜋2Y0𝑅
ln

(
2𝛼𝑅
𝑎

)
+ 𝑞

4𝜋2Y0𝑅
ln

(
4
𝛼

)
=

𝑞

4𝜋2Y0𝑅
ln

(
8𝑅
𝑎

)
.

𝛼 drops out from the expression. From here we obtain the capacitance 𝐶 = 𝑞/Φ :

𝐶 =
4𝜋2Y0𝑅

ln
( 8𝑅
𝑎

) .
𝐶 → 0 as 𝑎 → 0.
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D.2 (1.0 point)
Let 𝑞(𝑡) be the charge on the ring at a time 𝑡 . Potential of the disk is thus 𝑞(𝑡)/𝐶 . Voltage drop of
the resistor is 𝑅0𝐼 (𝑡) = 𝑅0 d𝑞/d𝑡 . Therefore for time − 𝑑

2𝑣 < 𝑡 < 𝑑
2𝑣 :

𝑞(𝑡)
𝐶

+ 𝑅0
d𝑞
d𝑡

= 𝑉0.

Integrating this equation and keeping in mind that 𝑞(𝑡) = 0 at 𝑡 = −𝑑/(2𝑣), we get:

𝑞(𝑡) = 𝐶𝑉0

(
1 − e−

𝑑
2𝑣𝑅0𝐶 e−

𝑡
𝑅0𝐶

)
.

The charge attains the largest absolute value at 𝑡 = 𝑑/(2𝑣). The value of the charge at this time is:

𝑞0 = 𝐶𝑉0

(
1 − e−

𝑑
𝑣𝑅0𝐶

)
.

When 𝑡 > 𝑑
2𝑣 , we get:

𝑞(𝑡)
𝐶

+ 𝑅0
d𝑞
d𝑡

= 0.

From here:
𝑞(𝑡) = 𝑞0e

− 𝑡
𝑅0𝐶

+ 𝑑
2𝑣𝑅0𝐶 = 𝐶𝑉0

(
e

𝑑
2𝑣𝑅0𝐶 − e−

𝑑
2𝑣𝑅0𝐶

)
e−

𝑡
𝑅𝐶 .

Therefore, we obtain:

𝑞(𝑡) =


0 for 𝑡 < − 𝑑

2𝑣 ;
𝐶𝑉0

(
1 − e−

𝑑
2𝑣𝑅0𝐶 e−

𝑡
𝑅0𝐶

)
for − 𝑑

2𝑣 < 𝑡 < 𝑑
2𝑣 ;

𝐶𝑉0

(
e

𝑑
2𝑣𝑅0𝐶 − e−

𝑑
2𝑣𝑅0𝐶

)
e−

𝑡
𝑅0𝐶 for 𝑡 > 𝑑

2𝑣 .

For a lens to be focusing we require that charge is negative, therefore 𝑉0 < 0. The dependence
of charge on time is shown in Figure 6.

Figure 6: Charge on the ring as a function of time.
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Part E. Focal length of a more realistic lens (2 points)

E.1 (1.7 points)
Like in part C, the radial equation of motion of an electron is:

𝑚¥𝑟 = 2𝑒𝑞(𝑡)𝛽𝑟,

where in this case 𝑞(𝑡) depends on time. Using the notation [ = 2𝑒𝛽/𝑚, we obtain:

¥𝑟 − [𝑞(𝑡)𝑟 = 0.

As 𝑓 /𝑣 ≫ 𝑅0𝐶 , then during charging–decharging the electron does not substantially change its ra-
dial position 𝑟 , and we can assume 𝑟 to be constant during the entire charging–decharging process.
In this case the acquired vertical velocity is

𝑣𝑟 = [𝑟

ˆ ∞

−𝑑/(2𝑣)
𝑞(𝑡) d𝑡 .

We can use the derived equations for 𝑞(𝑡) and find the integrals. The integral
´ 𝑑/(2𝑣)
−𝑑/(2𝑣) 𝑞(𝑡) d𝑡 is

(using the notation 𝑑/𝑣 = 𝑡0, 𝑅0𝐶 = 𝜏 , 𝐶𝑉0 = 𝑄0):

ˆ 𝑡0/2

−𝑡0/2
𝑞(𝑡) d𝑡 =

ˆ 𝑡0/2

−𝑡0/2
𝑄0

(
1 − e−

𝑡0
2𝜏 e−

𝑡
𝜏

)
d𝑡 = 𝑄0

(
𝑡0 − 𝜏

[
1 − e−𝑡0/𝜏

] )
.

The integral
´ ∞
𝑑/(2𝑣) 𝑞(𝑡) d𝑡 is

ˆ ∞

𝑡0/2
𝑄0

(
e
𝑡0
2𝜏 − e−

𝑡0
2𝜏

)
e−

𝑡
𝜏 d𝑡 = 𝑄0𝜏

[
1 − e−𝑡0/𝜏

]
.

Adding the two integrals we obtain for the final integral:
ˆ ∞

−𝑡0/2
𝑞(𝑡)𝑑𝑡 = 𝑄0𝑡0.

Interestingly, it does not depend on 𝜏 = 𝑅0𝐶 . Therefore, the acquired vertical velocity of the electron
is

𝑣𝑟 = [𝑟
𝐶𝑉0𝑑

𝑣
=
2𝑒𝛽𝐶𝑉0𝑑𝑟

𝑚𝑣
.

Following the logic similar to part C, we derive the focal length

𝑓 = − 𝐸

𝑒𝐶𝑉0𝑑𝛽
.

E.2 (0.3 points).
Comparing 𝑓 = −𝐸/(𝑒𝐶𝑉0𝑑𝛽) with 𝑓 = −𝐸/(𝑒𝑞𝑑𝛽) from part C we immediataly obtain 𝑞eff = 𝐶𝑉0.


