Mass Measurement

Revision in Part A. 3 such that

$-0.8 \leqq a \leqq-0.3 \mathrm{~mm}(0.1)$
Write down the numbers $\mathbf{0}$ to 9 in instead of $-0.08 \leqq a \leqq-0.03 \mathrm{~mm}(0.1)$.

0	1	2	3	4	5	6	7	8	9
0	1	2	3	4	5	6	7	8	9

No points

Part A: Hooke's law and electromagnetic forces (2.4 points)

A. 1 (0.4pt)

Magnetic field lines have arrows from N to $\mathrm{S}(0.1)$
At least one end comes from a magnet (0.1)
Multiple horizontal lines near the edge of the magnet gap (0.1)
No contradictions such as asymmetry, crossing or branching (0.1)
A.2 (0.6pt)

Missing measurement points (-0.1 each $)$		
N	Z / mm	I / A
0	12.8	0
1	12.2	0.103
2	11.6	0.213
3	11.1	0.323
4	10.7	0.423
5	10.2	0.524

$b=\frac{I}{N}=\frac{0.53}{5}=0.106$
$b_{+}=\frac{0.55}{5}=0.110$
$b_{-}=\frac{0.505}{5}=0.101$
$\Delta b=\frac{0.110-0.101}{2}=0.005$
$b=0.106 \pm 0.005 \mathrm{~A}$

Reading of b from the graph (max 0.3)
Reasonable value (0.1) and uncertainty (0.1)
Missing or incorrect units (-0.1)
Reasonable result of b (correct reading and units required) 0.08-0.13 A (0.1)

Part B: Induced electromotive force (3.0 points)
B. 1 (0.2pt)
$V=2 \pi f A B L$
Correct equation (0.2)
B. 2 (0.5pt)
$f_{\mathrm{B}}=15.85 \mathrm{~Hz}$
Reasonable result of f and correct units: $12-20 \mathrm{~Hz}(0.1)$

A / mm	V^{\prime} / V
0.5	0.024
1.0	0.048
1.5	0.071
2.0	0.099
2.5	0.124
3.0	0.146

Measurements of A and $V^{\prime}(\max 0.4)$
Data points (max 0.3)
5 or more (0.3), 3 or $4(0.2), 1$ or $2(0.1)$
The largest A is $2.5-3.0 \mathrm{~mm}$. (0.1)

$$
\begin{aligned}
& \text { B. } 3 \text { (0.7pt) } \\
& c=\frac{V^{\prime}}{A}=\frac{0.147}{5}=0.049 \quad \mathrm{~V} / \mathrm{mm} \\
& c_{+}=\frac{0.150}{5}=0.050, c_{-}=\frac{0.144}{5}=0.048 \\
& \Delta c=\frac{0.050-0.048}{2}=0.001 \mathrm{~V} / \mathrm{mm} \\
& c=0.049 \pm 0.001 \mathrm{~V} / \mathrm{mm} \\
& \text { Reading of } c \text { from the graph (max 0.3) } \\
& \text { Reasonable value (0.1) and uncertainty (0.1) } \\
& \text { Missing or incorrect units }(-0.1) \\
& \text { Reasonable result of } c \text { (correct reading and units required) } \\
& 0.03-0.08 \mathrm{~V} / \mathrm{mm}(0.1)
\end{aligned}
$$

Calculation of $B L$ using the obtained results (max 0.2)
Correct value and units (0.2), correct calculation formula only (0.1) Calculation of the uncertainty ($\max 0.2$)

Correct value (0.2), correct calculation formula only (0.1)
$B L=\frac{\sqrt{2} V^{\prime}}{2 \pi A f_{\mathrm{B}}}=\frac{\sqrt{2} c}{2 \pi f_{\mathrm{B}}}=\frac{\sqrt{2} \times 0.049}{2 \pi \times 15 . .85}=0.000696 \mathrm{Vs} / \mathrm{mm}=0.696 \mathrm{Vs} / \mathrm{m}$
$\Delta(B L)=\frac{\sqrt{2}}{2 \pi f_{\mathrm{B}}} \Delta c=\frac{\sqrt{2} \times 0.001}{2 \pi \times 15.85}=0.000014 \mathrm{Vs} / \mathrm{mm}=0.014 \mathrm{Vs} / \mathrm{m} \quad\left(\Delta(B L)=\frac{B L}{c} \Delta c\right.$ available $)$
$B L=0.696 \pm 0.014 \mathrm{Vs} / \mathrm{m}$

> B. 5 (1.2pt)
> $m=\frac{m g}{B L} \cdot \frac{B L}{g}=\frac{I}{N} \cdot \frac{B L}{g}=b \frac{B L}{g}=0.106 \times \frac{0.696}{9.80}=0.0075 \mathrm{~kg}=7.5 \mathrm{~g}$
> $\Delta m=\sqrt{(\Delta b)^{2} \cdot\left(\frac{B L}{g}\right)^{2}+\left(\frac{b}{g}\right)^{2} \cdot(\Delta(B L))^{2}}=0.00039 \mathrm{~kg}=0.4 \mathrm{~g}$
> $\quad\left(\Delta m=\left|\frac{B L}{g}\right| \Delta b+\left|\frac{b}{g}\right| \Delta(B L), \frac{\Delta m}{m}=\frac{\Delta b}{b}+\frac{\Delta(B L)}{B L}, \frac{\Delta m}{m}=\sqrt{\left(\frac{\Delta b}{b}\right)^{2}+\left(\frac{\Delta(B L)}{B L}\right)^{2}}\right.$ available $)$
$m=7.5 \pm 0.4 \mathrm{~g}$
Calculation of m using the obtained results (max 0.5)
Correct value and units (0.2), correct calculation formula only (0.1)
Reasonable result (correct calculation and units required) (max 0.3)
$7.2-8.2 \mathrm{~g}(0.3), 6.7-8.7 \mathrm{~g}(0.2), 6.2-9.2 \mathrm{~g}(0.1)$
Calculation of the uncertainty $(\max 0.2)$
Correct value (0.2), correct calculation formula only (0.1)
$k=-\frac{m g}{a}=-\frac{0.0075 \times 9.80}{-0.51}=0.144 \mathrm{~N} / \mathrm{mm}=144 \mathrm{~N} / \mathrm{m}$
$\Delta k=\sqrt{(\Delta a)^{2} \cdot\left(\frac{m g}{a^{2}}\right)^{2}+\left(\frac{g}{a}\right)^{2} \cdot(\Delta m)^{2}}=0.011 \mathrm{~N} / \mathrm{mm}=11 \mathrm{~N} / \mathrm{m}$
$\left(\Delta k=\left|\frac{m g}{a^{2}}\right| \Delta a+\left|\frac{g}{a}\right| \Delta m, \frac{\Delta k}{k}=\frac{\Delta a}{|a|}+\frac{\Delta m}{m}, \frac{\Delta k}{k}=\sqrt{\left(\frac{\Delta a}{a}\right)^{2}+\left(\frac{\Delta m}{m}\right)^{2}}\right.$ available)
$k=144 \pm 11 \mathrm{~N} / \mathrm{m}$
Calculation of k using the obtained results (max 0.3)
Correct value and units (0.2), correct calculation formula only (0.1)
Reasonable result (correct calculation and units required):
120-180 N/m (0.1)
Calculation of the uncertainty (max 0.2)
Correct value (0.2), correct calculation formula only (0.1)

Part C. Mass-dependent resonant frequency (2.3 points)

> C. 1 (0.2pt) $$
f_{N}=\frac{1}{2 \pi} \sqrt{\frac{k^{\prime}}{M+N m}} \quad \text { Correct equation }(0.2)
$$

Calculation for linear relationship $\left(1 / f^{2}\right)$ in Table C. 2 (max 0.3)
Missing or incorrect units (-0.1)
C. 3 (1.0pt)

Missing or error of calculation (-0.1 each)

Using the equation $\frac{1}{f^{2}}=(2 \pi)^{2}\left(\frac{M}{k^{\prime}}+\frac{m}{k^{\prime}} N\right), \frac{M}{k^{\prime}}$ and $\frac{m}{k^{\prime}}$ are obtained from the graph.

$$
\frac{M}{k^{\prime}}=\frac{1 / f_{0}^{2}}{(2 \pi)^{2}}=\frac{0.0039}{(2 \pi)^{2}}=9.88 \times 10^{-5} \mathrm{~s}^{2}
$$

Reading from the graph and calculation (max 0.4)
Reasonable values of $\frac{M}{k^{\prime}}(0.2)$ and $\frac{m}{k^{\prime}}(0.2)$
Missing or incorrect units (-0.1 each)

$$
\frac{m}{k^{\prime}}=\frac{(0.0140-0.0039) / 5}{(2 \pi)^{2}}=\frac{0.00202}{(2 \pi)^{2}}=5.12 \times 10^{-5} \mathrm{~s}^{2}
$$

$$
\begin{aligned}
& \text { C. } 4 \text { (0.6pt) } \\
& \frac{M}{m}=\frac{M / k^{\prime}}{m / k^{\prime}}=\frac{9.88}{5.12} \\
& \frac{M}{m}=1.93 \quad \begin{array}{l}
\begin{array}{l}
\text { Calculation of } \frac{M}{m} \text { using the obtained results (max 0.4) } \\
\text { Correct value and units }(0.1) \\
\text { Reasonable result (correct calculation and units required) (max } 0.3) \\
1.85-2.0(0.3), 1.75-2.1(0.2), 1.65-2.2(0.1)
\end{array} \\
M=\frac{M}{m} \cdot m=1.93 \times 0.0075=0.0145 \mathrm{~kg}=14.5 \mathrm{~g} \\
M=14.5 \mathrm{~g} \\
k^{\prime}=\frac{M}{\frac{M}{k^{\prime}}}=\frac{0.0145}{9.88 \times 10^{-5}} \\
k^{\prime}=147 \mathrm{~N} / \mathrm{m}
\end{array} \quad \text { Correct value and units of } M \text { using the obtained results }(0.1) \\
& \hline
\end{aligned}
$$

Part D. Resonance characteristics (2.3 points)

D. 1 (0.4pt)

$$
V_{\mathrm{AC}}^{\prime}=0.157 \mathrm{~V} \quad \text { Measurement of } V_{\mathrm{AC}}^{\prime} \text { and correct units }(0.1)
$$

$F_{\mathrm{AC}}=B L I_{\mathrm{AC}}=B L \times 0.106 \times \sqrt{2} V^{\prime}{ }_{\mathrm{AC}}=0.696 \times 0.106 \times \sqrt{2} \times 0.157=0.0164 \mathrm{~N}$
Calculation of F_{AC} using the obtained results (max 0.3)
Correct value and units (0.3), correct calculation formula only (0.1)

D. 2 (0.9pt)

f / Hz	A / mm		
15.88	3.0		
15.79	3.0	Measurements of f and A (max 0.7	
15.73	2.8	Data points (max 0.3)	
15.61	2.1	$\geqq 10(0.3), 5-9(0.2), 3 \text { or } 4$	
15.49	1.9	Existence of f interval smaller The largest A is $2.5-3.3 \mathrm{~mm}$.	
15.34	1.2		
15.20	1.1		
16.02	2.7		
16.14	2.1		
16.24	2.0		
16.41	1.6		
16.60	1.1		
16.81	1.0		

D. 3 (1.0pt)

Reading from the graph D. 2
$f_{0}=15.83 \mathrm{~Hz}$
$A\left(f_{0}\right)=3.0 \mathrm{~mm}$
Reading from the graph (max 0.4)
Rationale to determine $\Delta f(0.1)$
Reasonable values of $f_{0}, A\left(f_{0}\right)$, and $\Delta f(0.1$ each $)$
$\Delta f=\frac{16.14-15.56}{2}=0.29 \mathrm{~Hz}$

Calculation using Eq.(4)
$M=\frac{F_{\mathrm{AC}}}{8 \pi^{2} f_{0} \Delta f A\left(f_{0}\right)}=\frac{0.0164}{8 \pi^{2} \times 15.83 \times 0.29 \times 0.003}=0.0151 \mathrm{~kg}=15.1 \mathrm{~g}$
$M=15.1 \mathrm{~g}$
Calculation of M using the obtained results (max 0.6)
Correct value and units (0.3), correct calculation formula only (0.1)
Reasonable result (correct calculation and units required) (max 0.3)

$$
13.5-16 \mathrm{~g}(0.3), 12-17.5 \mathrm{~g}(0.2), 10.5-19 \mathrm{~g}(0.1)
$$

