

Mass Measurement				Revision in Part A.3 such that -0.8 $\leq a \leq$ -0.3 mm (0.1)							
Write down the numbers 0 to 9 in			in ^{ir}	istead	of -0.0	8≦ <i>a</i> ≦	≦-0.03	mm (0	.1).		
	0	1	2	3	4	5	6	7	8	9	
	0	1	2	3	4	5	6	7	8	9	No points

Part A: Hooke's law and electromagnetic forces (2.4 points)

A.1 (0.4pt)	
	Magnetic field lines have arrows from N to S (0.1) At least one end comes from a magnet (0.1) Multiple horizontal lines near the edge of the magnet gap (0.1) No contradictions such as asymmetry, crossing or branching (0.1)

A.2 (0.6pt)	Mi	ssing measurement	points (-0.1 each)
	Ν	z /mm	I /A
	0	12.8	0
	1	12.2	0.103
	2	11.6	0.213
	3	11.1	0.323
	4	10.7	0.423
	5	10.2	0.524

A1-2 English (Solution)

A1-3 English (Solution)

Part B: Induced electromotive force (3.0 points)

$V = 2\pi f ABL$ Correct equation (0.2)B.2 (0.5pt) $f_{\rm B} = 15.85$ HzReasonable result of f and correct units: 12–20 Hz (0.1)	B.1 (0.2pt)								
B.2 (0.5pt) $f_{\rm B} = 15.85 \text{ Hz}$ Reasonable result of <i>f</i> and correct units: 12–20 Hz (0.1)	$V = 2\pi f A B L$	Correct equation (0.2)							
	B.2 (0.5pt) $f_{\rm B} = 15.85 {\rm Hz}$	Reasonable result of f and correct units: 12–20 Hz (0.1)							
A /mm V'/V 0.5 0.024 1.0 0.048 1.5 0.071 2.0 0.099 2.5 0.124 3.0 0.146	A /mm 0.5 1.0 1.5 2.0 2.5 3.0	V'/V 0 0.024 0 0.048 0 0.071 0 0.099 0 0.124 0 0.146	Measurements of <i>A</i> and <i>V</i> [*] (max 0.4) Data points (max 0.3) 5 or more (0.3), 3 or 4 (0.2), 1 or 2 (0.1) The largest <i>A</i> is 2.5–3.0 mm. (0.1)						

A1-5 English (Solution)

$$\frac{2}{2237 \text{DEV}(237 \text{DEV}(2484\text{DEV}))}{2237 \text{DEV}(2484\text{DEV})}$$

$$B.4 (0.4pt)$$

$$BL = \frac{v}{2\pi A f_{B}}, \quad V' = V/\sqrt{2}$$

$$BL = \frac{\sqrt{2}}{2\pi A f_{B}}, \quad V' = V/\sqrt{2}$$

$$BL = \frac{\sqrt{2}}{2\pi A f_{B}} = \frac{\sqrt{2}}{2\pi \pi f_{B}} = \frac{\sqrt{2} \times 0.049}{2\pi \times 15.85} = 0.000696 \text{ Vs/mm} = 0.696 \text{ Vs/m}$$

$$\Delta (BL) = \frac{\sqrt{7}}{2\pi f_{B}} \Delta c = \frac{\sqrt{2} \times 0.049}{2\pi \times 15.85} = 0.000014 \text{ Vs/mm} = 0.014 \text{ Vs/m} \quad (\Delta (BL) = \frac{BL}{c} \Delta c \text{ available})$$

$$BL = 0.696 \pm 0.014 \text{ Vs/m}$$

$$M = \sqrt{(\Delta b)^{2} \cdot (\frac{BL}{b})^{2}} + (\frac{B}{b})^{2} \cdot (\Delta (BL))^{2} = 0.00039 \text{ kg} = 0.4 \text{ g}$$

$$(\Delta m = \left|\frac{BL}{g}\right| \Delta b + \left|\frac{b}{g}\right| \Delta (BL), \quad \frac{\Delta m}{m} = \frac{\Delta b}{b} + \frac{\Delta (BL)}{BL}, \quad \frac{\Delta m}{m} = \sqrt{(\frac{A b}{b})^{2} + (\frac{\Delta (BL)}{BL})^{2}} \text{ available})$$

$$m = 7.5 \pm 0.4 \text{ g}$$

$$Calculation of m using the obtained results (max 0.5)$$

$$Correct value and units (0.2), correct calculation formula only (0.1)$$

$$Reasonable result (correct calculation formula only (0.1)$$

$$k = -\frac{mg}{a} = -\frac{0.0075 \text{ Sy } 9.00}{-0.51} = 0.144 \text{ N/mm} = 144 \text{ N/m}$$

$$\Delta k = \sqrt{(\Delta a)^{2} \cdot (\frac{ma}{a})^{2} + (\frac{a}{a})^{2} \cdot (\Delta m)^{2}} = 0.011 \text{ N/mm} = 11 \text{ N/m}$$

$$(\Delta k = \left|\frac{mg}{a^{2}} \Delta a + \left|\frac{g}{a}\right| \Delta m, \quad \frac{\Delta k}{k} = \frac{\Delta a}{|a|} + \frac{\delta m}{m}, \quad \frac{\Delta k}{k} = \sqrt{(\frac{\Delta a}{a})^{2} + (\frac{\Delta m}{m})^{2}} \text{ available})$$

$$k = 144 \pm 11 \text{ N/m}$$

$$Calculation of k using the obtained results (max 0.3)$$

$$Correct value and units (0.2), correct calculation formula only (0.1)$$

$$Reasonable result (correct calculation formula only (0.1)$$

$$Reasonable result (correct calculation formula only (0.1)$$

$$Reasonable result (max 0.3)$$

$$Correct value and units (0.2), correct calculation formula only (0.1)$$

$$Reasonable result (correct calculation formula only (0.1)$$

$$Re$$

A1-6

Part C. Mass-dependent resonant frequency (2.3 points)

C.1 (0.2pt)
$$f_N = \frac{1}{2\pi} \sqrt{\frac{k'}{M+Nm}}$$
Correct equation (0.2)

C.2 (0.5	pt)	Measurements of <i>f</i> Missing measure	(max 0.5) ment points (-0.1 each)				
	N	f /Hz	$1/f^2 /s^2$					
	0	15.96	0.003926					
	1	13.03	0.005390					
	2	11.33	0.007790					
	3	10.13	0.009745					
	4	9.06	0.01218					
	5	8.45	0.01401					
			Ca	lculat	tion for li	near relati	onship (poi	nts in C.3)

Part D. Resonance characteristics (2.3 points)

D.1 (0.4pt)										
$V'_{\rm AC} = 0.157 \ {\rm V}$ Mea		Measu	Measurement of V'_{AC} and correct units (0.1)							
$F_{\rm AC} = BLI_A$	$A_{\rm C} = BL \times$	$< 0.106 \times \sqrt{2}$	$\overline{2}V'_{AC} = 0.696 \times 0.106 \times \sqrt{2} \times 0.157 = 0.0164 \text{ N}$							
		Calcula	Calculation of F_{AC} using the obtained results (max 0.3)							
		Corr	ect value and units (0.3), correct calculation formula only (0.1)							
D.2 (0.9pt)										
f/H	z	A /mm								
1	5.88	3.0								
1	5.79	3.0	Measurements of f and A (max 0.7)							
1	5.73	2.8	= 10 (0.3) 5-9 (0.2) 3 or 4 (0.1)							
1	5.61	2.1	Points smaller than half maximum of A (max 0.2: 0.1 each side)							
1	5.49	1.9	Existence of f interval smaller than 0.2 Hz (0.1)							
1	5.34	1.2	The largest A is 2.5–3.3 mm. (0.1)							
1	5.20	1.1								
1	6.02	2.7								
1	6.14	2.1								
1	6.24	2.0								
1	6.41	1.6								
1	6.60	1.1								
1	6.81	1.0								
	1									

A1-11 English (Solution)

D.3 (1.0pt)

Reading from the graph D.2

$$f_0 = 15.83 \text{ Hz}$$

 $A(f_0) = 3.0 \text{ mm}$

 $\Delta f = \frac{16.14 - 15.56}{2} = 0.29 \text{ Hz}$

Calculation using Eq.(4)

$$M = \frac{F_{\rm AC}}{8\pi^2 f_0 \Delta f A(f_0)} = \frac{0.0164}{8\pi^2 \times 15.83 \times 0.29 \times 0.003} = 0.0151 \text{ kg} = 15.1 \text{ g}$$

 $M = 15.1 \, \mathrm{g}$

Calculation of *M* using the obtained results (max 0.6)
Correct value and units (0.3), correct calculation formula only (0.1)
Reasonable result (correct calculation and units required) (max 0.3)
13.5–16 g (0.3), 12–17.5 g (0.2), 10.5–19 g (0.1)

Reading from the graph (max 0.4) Rationale to determine $\Delta f(0.1)$

Reasonable values of f_0 , $A(f_0)$, and $\Delta f(0.1 \text{ each})$