Solution / marking scheme - Characterizing Soil Colloids (10 points)

General rules

- In the following, "coefficients" refer to the numerical factors and do not include parameters.

Part A. Analysis of motions of colloidal particles (1.6 points)

A. 1 (total 0.8 pt)
(0.4 pt)
$v_{0}=\frac{I_{0}}{M}$
partial points
$(0.2 \mathrm{pt}) \quad M v_{0}=I_{0}$
(0.4 pt)
$\tau=\frac{M}{\gamma}$

- 0.4 pt if the answers are $v_{0}=M / \gamma$ and $\tau=I_{0} / M$. partial points
$(0.2 \mathrm{pt}) \quad M \dot{v}=-\gamma v(t)$
A. 2 (total 0.8 pt)
(0.6 pt)
$v(t)=\sum_{i} \frac{I_{i}}{M} e^{-\left(t-t_{i}\right) / \tau}$
- 0.4 pt if $\frac{I_{i}}{M} e^{-\left(t-t_{i}\right) / \tau}$ is written. The subscript can be any dummy variable used in the summation symbol.
- 0.2 pt if sum is taken (if Σ is written).
- the range of sum is not considered here (even if it is wrong).
- $\tau=M / \gamma$ can be substituted.
(0.2 pt)
the inequality specifying the range of t_{i} that needs to be considered:
$0<t_{i}<t$
- < can be \leq (full mark is given).
- 0.2 pt (full mark) is given to $t_{i}<t$ (without $0<$)
- No point is given to $t_{i}>0$ solely.

Part B. Effective equation of motion (1.8 points)
B. 1 (total 1.0 pt)
(0.5 pt) Usable letters: C, δ, t

$$
\langle\Delta x(t)\rangle=0
$$

(0.5 pt) Usable letters: C, δ, t

$$
\left\langle\Delta x(t)^{2}\right\rangle=C \delta t
$$

partial points

$$
\begin{equation*}
(0.3 \mathrm{pt}) \quad \Delta x(t)=\sum_{n=1}^{N} v_{n} \delta \tag{B.1.1}
\end{equation*}
$$

- 0.2 pt if δ is missing.

$$
\begin{equation*}
(0.2 \mathrm{pt}) \quad\left\langle\Delta x(t)^{2}\right\rangle=\sum_{n=1}^{N} C \delta^{2}=N C \delta^{2}=C \delta t \tag{B.1.2}
\end{equation*}
$$

- 0.2 pt only if $C \delta t$ is written. 0.1 pt if only $\sum_{n=1}^{N} C \delta^{2}$ or $N C \delta^{2}$ is written.
B. 2 (total 0.8 pt)
(0.4 pt)
$\alpha=-1$
(0.4 pt)

$$
\beta=1
$$

Part C. Electrophoresis (2.7 points)

C. 1 (total 0.5 pt$)$

$(0.5 \mathrm{pt})$ Usable letters: $v, \delta, n\left(x_{0}\right), \frac{d n}{d x}\left(x_{0}\right)$

$$
N_{+}\left(x_{0}\right)=\frac{1}{2} n\left(x_{0}\right) v-\frac{1}{4} \frac{d n}{d x}\left(x_{0}\right) v^{2} \delta
$$

- 0.3 pt if δ or A or both are multiplied unnecessarily (subtraction of 0.2 pt)
- 0.4 pt if either coefficient (or both) is wrong (subtraction of 0.1 pt)
- 0.4 pt if the sign of the second term is wrong (subtraction of 0.1 pt)
- If more than one of the above mistakes are made, points to subtract accumulate.
partial points
$(0.3 \mathrm{pt}) \quad N_{+}\left(x_{0}\right)=\int_{x_{0}-v \delta}^{x_{0}} \frac{n(x)}{2 \delta} d x \quad$ or $\quad N_{+}\left(x_{0}\right)=\frac{v}{2} n\left(x_{0}-v \delta / 2\right)$
- 0.2 pt if δ or A or both are multiplied unnecessarily (subtraction of 0.1 pt)
- 0.2 pt if any coefficient is wrong (subtraction of 0.1 pt)
- 0.2 pt if the integration range is $\int_{x_{0}}^{x_{0}+v \delta}$ (subtraction of 0.1 pt)
- 0.2 pt if $N_{+}\left(x_{0}\right)=\frac{v}{2} n\left(x_{0}+v \delta / 2\right)$ (subtraction of 0.1 pt)
- If more than one of the above mistakes are made, points to subtract accumulate.

C. $2($ total 0.7 pt$)$

$(0.4 \mathrm{pt})$ Usable letters: $C, \delta, n\left(x_{0}\right), \frac{d n}{d x}\left(x_{0}\right)$

$$
J_{D}(x)=-\frac{1}{2} \frac{d n}{d x}(x) C \delta
$$

- 0.3 pt if the sign or the coefficient is wrong (but pay attention to carryover from C.1).
partial points
$(0.1 \mathrm{pt}) \quad N_{-}\left(x_{0}\right)=\frac{1}{2} n\left(x_{0}\right) v+\frac{1}{4} \frac{d n}{d x}\left(x_{0}\right) v^{2} \delta$
(0.1 pt) Usable letters: C, δ

$$
D=\frac{1}{2} C \delta
$$

(0.2 pt) Usable letters: D, t

$$
\left\langle\Delta x(t)^{2}\right\rangle=2 D t
$$

- No point if the answer includes C or δ.

C. 3 (total 0.5 pt$)$

(0.5 pt) Usable letters: $n(x), T, Q, E, k$

$$
\frac{d n}{d x}=\frac{n(x)}{k T} Q E
$$

partial points

$$
\begin{equation*}
(0.3 \mathrm{pt}) \quad \Pi(x) A+n(x) A \Delta x Q E=\Pi(x+\Delta x) A \tag{C.3.1}
\end{equation*}
$$

C. 4 (total 0.5 pt$)$
(0.3 pt)

$$
\langle v(t)\rangle=\frac{Q E}{\gamma}\left(1-e^{-t / \tau}\right)
$$

- $\tau=M / \gamma$ can be substituted.
partial points
$(0.3 \mathrm{pt}) \quad M \frac{d\langle v(t)\rangle}{d t}=-\gamma\langle v(t)\rangle+Q E$
(0.2 pt)

$$
u=\frac{Q E}{\gamma}
$$

C. 5 (total 0.5 pt$)$
(0.5 pt) Usable letters: k, γ, T

$$
D=\frac{k T}{\gamma}
$$

$(0.2 \mathrm{pt}) \quad J_{D}(x)=-\frac{D Q E}{k T} n(x)$
$(0.2 \mathrm{pt}) \quad J_{Q}(x)=\frac{Q E}{\gamma} n(x)$

Part D. Mean square displacement (2.4 points)
D. 1 (total 1.0 pt)
(1.0 pt)
$N_{A}=5.6 \times 10^{23} \mathrm{~mol}^{-1}$

- No reduction if the unit is missing.
- 0.8 pt if the second digit is wrong but the value is in the range $5.5-5.7 \times 10^{23}$. partial points
$(0.5 \mathrm{pt}) \quad\left\langle\Delta x^{2}\right\rangle=\frac{R T \Delta t}{3 \pi a \eta N_{A}}$
- 0.3 pt if both the answer of C. $2\left(\left\langle\Delta x^{2}\right\rangle=2 D \Delta t\right)$ and that of C. $5\left(D=\frac{k T}{\gamma}\right)$ are given in the worksheet for D.1. The combination of them $\left(\left\langle\Delta x^{2}\right\rangle=\frac{2 k T \Delta t}{\gamma}\right)$ is also acceptable. $k=R / N_{A}$ and $\gamma=6 \pi a \eta$ can be substituted here.
- No reduction if t is used for Δt.

$$
\begin{equation*}
(0.3 \mathrm{pt}) \quad\left\langle\Delta x^{2}\right\rangle=6.34 \mu \mathrm{~m}^{2} \tag{D.1.2}
\end{equation*}
$$

- No reduction if the value is in the range $6.2-6.4 \mu \mathrm{~m}^{2}$.
- 0.2 pt if the value is in the range $4-9 \mu \mathrm{~m}^{2}$ or if the standard deviation of Δx is in the range 2-3 $\mu \mathrm{m}$.
- Subtract 0.1 pt if the unit is missing or wrong.

D. 2 (total 0.8 pt)

(0.2 pt) Usable letters: u, D, t

$$
\left\langle\Delta x^{2}\right\rangle=(u t)^{2}+2 D t
$$

(0.2 pt)
$\left\langle\Delta x^{2}\right\rangle \propto \begin{cases}t & \text { for small } t \\ t^{2} & \text { for large } t\end{cases}$

- 0.1 pt independently for each answer.
(0.2 pt)
$t_{*}=\frac{2 D}{u^{2}}$
(0.2 pt)
Points are given according to the criteria given below.

- 0.1 pt if the graph is monotonically increasing and convex (no points if there are multiple curves that look like the answered graph)
- 0.1 pt if t_{*} is written between the two power-law regions (the label can be either t_{*} or $\log t_{*}$).

D. 3 (total 0.6 pt)

(0.6 pt)
$\left\langle\Delta x^{2}\right\rangle= \begin{cases}2 D t & \text { for small } t \\ u_{0}^{2} t^{2} & \text { for intermediate } t \\ \left(u_{0}^{2} \delta\right) t & \text { for large } t\end{cases}$

- 0.2 pt independently for each answer.
- Wrong answer in B. 1 is not considered.

Part E. Water purification (1.5 points)

E. 1 (total 1.5 pt)

(1.5 pt)
$c=\frac{8 B^{2} \epsilon^{3}(k T)^{5}}{e^{4} N_{A} A^{2} q^{6}}$

- 1.3 pt if only the coefficient is wrong (e is a part of the coefficient) (then no further partial point is given)
partial points
(0.5 pt) $\min U^{\prime}(d)=0$
- No point for $U^{\prime}(d)=0$ solely (without indicating what d to consider) or $U^{\prime}(a)=0$.
- 0.2 pt if the graph of the potential with an energy barrier (the graph first increases monotonically, then decreases monotonically) is drawn (this is the potential for $c<c_{*}$)
- independently, 0.2 pt if the graph of the potential without an energy barrier (the graph increases monotonically) is drawn (this is the potential for $c>c_{*}$)
$(0.2 \mathrm{pt}) \quad U^{\prime}(d)=\frac{A}{d^{2}}-\frac{B \epsilon(k T)^{2}}{q^{2} \lambda} e^{-d / \lambda}=0$
$(0.2 \mathrm{pt}) \quad U^{\prime \prime}(d)=-\frac{2 A}{d^{3}}+\frac{B \epsilon(k T)^{2}}{q^{2} \lambda^{2}} e^{-d / \lambda}=0$
- 0.2 pt (out of the 0.4 pt right above) if both $U^{\prime}(d)=0$ and $U^{\prime \prime}(d)=0$ are written as simultaneous equations, without their correct explicit forms.
(0.2 pt) $\quad d=2 \lambda=\sqrt{\frac{A q^{2} \lambda}{B \epsilon(k T)^{2}}}$
$(0.3 \mathrm{pt}) \quad \lambda=\frac{e^{2} A q^{2}}{4 B \epsilon(k T)^{2}}$
- 1.4 pt is given in total if (E.1.5) is written.
- 1.2 pt if only the coefficient is wrong (e is a part of the coefficient)

E. 1 (cont.)

Another solution: it is also physically reasonable to consider $\max U(d)=0$ instead of (E.1.1), though this does not meet the requirements given in the question. Therefore, partial points may be given as follows if the question is answered along this line.

partial points

$$
\begin{equation*}
(0.5 \mathrm{pt}) \quad \max U(d)=0 \tag{E.1.6}
\end{equation*}
$$

- No point for $U(d)=0$ solely (without indicating what d to consider) or $U(a)=0$.
- 0.2 pt if the graph of the potential with an energy barrier that is higher than $U=0$ or $U(d \rightarrow \infty)$ is drawn (this is the potential for $c<c_{*}$)
- independently, 0.2 pt if the graph of the potential with an energy barrier that is lower than $U=0$ or $U(d \rightarrow \infty)$ is drawn (this is the potential for $c>c_{*}$)

$$
\begin{equation*}
U(d)=-\frac{A}{d}+\frac{B \epsilon(k T)^{2}}{q^{2}} e^{-d / \lambda}=0 \tag{E.1.7}
\end{equation*}
$$

$(0.2 \mathrm{pt}) \quad U^{\prime}(d)=\frac{A}{d^{2}}-\frac{B \epsilon(k T)^{2}}{q^{2} \lambda} e^{-d / \lambda}=0$

- No point for (E.1.7)
- 0.2 pt if both $U(d)=0$ are $U^{\prime}(d)=0$ are written as simultaneous equations

$$
\begin{equation*}
(0.5 \mathrm{pt}) \quad d=\lambda=\frac{e A q^{2}}{B \epsilon(k T)^{2}} \tag{E.1.9}
\end{equation*}
$$

- 1.2 pt is given in total if (E.1.9) is written.
- 1.0pt if only the coefficient is wrong (e is a part of the coefficient)

$$
\begin{equation*}
(0.1 \mathrm{pt}) \quad c=\frac{B^{2} \epsilon^{3}(k T)^{5}}{2 e^{2} N_{A} A^{2} q^{6}} \tag{E.1.10}
\end{equation*}
$$

- 1.3 pt is given in total if (E.1.10) is written.
- 1.1 pt if only the coefficient is wrong (e is a part of the coefficient)

