T2-1

Solution / marking scheme - Neutron Stars (10 points)

General rules

- In the following, "coefficients" refer to the numerical factors and do not include parameters.

Part A. Mass and stability of nuclei (2.5 points)

A. 1 (total 0.9 pt)
(0.9 pt)
$A=50$

- No reduction if $A=5.0 \times 10^{1}$.
- 0.8 pt if the value is in the range 49.5-50.4.

partial points

$(0.2 \mathrm{pt}) \quad \frac{B}{A}=a_{V}-a_{S} A^{-1 / 3}-\frac{a_{C}}{4} A^{2 / 3}$

- No reduction if the difference from (A.1.1) is only the overall coefficient. This rule is applied throughout.

$$
\begin{equation*}
(0.1 \mathrm{pt}) \frac{d(B / A)}{d A}=0 \tag{A.1.2}
\end{equation*}
$$

$(0.2 \mathrm{pt}) \quad \frac{a_{S}}{3} A^{-4 / 3}-\frac{a_{C}}{6} A^{-1 / 3}=0$

- Points for (A.1.2) are given if (A.1.3) is stated although (A.1.2) is not explicitly written.

$$
\begin{equation*}
(0.2 \mathrm{pt}) \quad A=\frac{2 a_{S}}{a_{C}} \tag{A.1.4}
\end{equation*}
$$

- 0.7 pt is given if the correct expression for A appears even if the intermediate steps are not fully written.
A. 2 (total 0.9 pt)

(0.9 pt)

$Z^{*}=79$

- No reduction if $Z^{*}=78$.
- 0.8 pt if the value is in the range 77.5-79.4.

partial points

$(0.3 \mathrm{pt}) \quad-2 a_{C} \frac{Z^{*}}{A^{1 / 3}}-4 a_{\mathrm{sym}} \frac{2 Z^{*}-A}{A}=0$
$(0.4 \mathrm{pt}) \quad Z^{*}=\frac{1}{1+\frac{a_{C}}{4 a_{\mathrm{sym}}} A^{2 / 3}} \cdot \frac{A}{2}$

- No reduction if $a_{C} / 4 a_{\text {sym }}$ is replaced by the numerical value in the range $0.007-0.008$.
A. 3 (total 0.7 pt)
(0.7 pt)
$C_{\text {fission }}=0.70$
- No reduction if $C_{\text {fission }}=0.7$.

partial points

$(0.3 \mathrm{pt}) \quad a_{S}\left[A^{2 / 3}-2\left(\frac{A}{2}\right)^{2 / 3}\right]+a_{C}\left[\frac{Z^{2}}{A^{1 / 3}}-2 \frac{(Z / 2)^{2}}{(A / 2)^{1 / 3}}\right]>0$

- No point if a_{V} is not canceled.

$$
\begin{equation*}
(0.2 \mathrm{pt}) \quad \frac{Z^{2}}{A}>\frac{2^{1 / 3}-1}{1-2^{-2 / 3}} \cdot \frac{a_{S}}{a_{C}} \tag{A.3.2}
\end{equation*}
$$

- Points for (A.3.1) are given if (A.3.2) is stated although (A.3.1) is not explicitly written.
- The coefficient may have different expressions, e.g., with $x=2^{1 / 3}$,

$$
\frac{x-1}{1-x^{-2}}=\frac{x^{2}}{1+x}=\frac{x}{1+x^{-1}}=\cdots=0.702414 \ldots
$$

Part B. Neutron star as a gigantic nucleus (1.5 points)
B. 1 (total 1.5 pt)
(0.8 pt)
$a_{\text {grav }}=6 \times 10^{-37} \mathrm{MeV}$

- No reduction if the unit is not written.
- 0.7 pt if only the order of magnitude is correct. partial points
$(0.4 \mathrm{pt}) \quad a_{\text {grav }}=\frac{3}{5} \frac{G m_{N}^{2}}{R_{0}}$
$(0.2 \mathrm{pt}) \quad a_{\text {grav }}=\frac{3}{5} \frac{\hbar c m_{N}^{2}}{R_{0} M_{P}^{2}}$
- Points for (B.1.1) are given if (B.1.2) is stated although (B.1.1) is not explicitly written.
- No reduction if \hbar is mistyped.
(0.7 pt)
$A_{c}=4 \times 10^{55}$
- No reduction for $A_{c}=5 \times 10^{55}$.
- 0.6 pt if only the order of magnitude is correct.
partial points
(0.2 pt) $\quad a_{V} A-a_{\text {sym }} A+a_{\text {grav }} A^{5 / 3}>0$
$(0.3 \mathrm{pt}) \quad A_{c}=\left(\frac{a_{\text {sym }}-a_{V}}{a_{\text {grav }}}\right)^{3 / 2}$
- Points for (B.1.3) are given if (B.1.4) is stated although (B.1.3) is not explicitly written.

Part C. Neutron star in a binary system (6.0 points)

C. 1 (total 1.0 pt)

(1.0 pt)
$\Delta \tau_{\mathrm{II}}=\left(1-\frac{\Delta \phi}{c^{2}}\right) \Delta \tau_{\mathrm{I}}$

- No points if the coefficient is wrong.
partial points
$(0.3 \mathrm{pt}) \quad v^{2}=2 g \Delta h=2 \Delta \phi \quad$ or $\quad v=\sqrt{2 \Delta \phi}$
$(0.5 \mathrm{pt}) \quad \Delta \tau_{\mathrm{II}}=\sqrt{1-v^{2} / c^{2}} \Delta \tau_{\mathrm{I}} \quad$ or $\quad \Delta \tau_{\mathrm{II}}=\sqrt{1-2 \frac{\Delta \phi}{c^{2}}} \Delta \tau_{\mathrm{I}}$
- Points for (C.1.1) are given if (C.1.2) is stated although (C.1.1) is not explicitly written.

C. 2 (total 1.8 pt$)$

(1.8 pt)
$\Delta t=\frac{2 G M_{\mathrm{WD}}}{c^{3}} \log \left(\frac{4\left|x_{N}\right| x_{E}}{d^{2}}\right)$

- No reduction if 4 is missing in log.
- No reduction if $\left|x_{N}\right|$ is written as $-x_{N}$.
- 0.1 pt is subtracted if the modulus in $\left|x_{N}\right|$ is missing.
- No points if other coefficients are wrong.
partial points
$(0.5 \mathrm{pt}) \quad t_{\mathrm{E}-\mathrm{N}}=\int_{x_{N}}^{x_{E}} \frac{d x}{c_{\text {eff }}(x)} \quad$ or $\quad \Delta t_{\mathrm{E}-\mathrm{N}}=\frac{\Delta x}{c_{\text {eff }}(x)}$
$(0.4 \mathrm{pt}) \quad t_{\mathrm{E}-\mathrm{N}} \simeq \frac{1}{c} \int_{x_{N}}^{x_{E}} d x\left(1+\frac{2 G M_{\mathrm{WD}}}{c^{2} \sqrt{x^{2}+d^{2}}}\right)$
- 0.1 pt is subtracted if the coefficient is wrong.
$(0.3 \mathrm{pt}) \Delta t=\frac{2 G M_{\mathrm{WD}}}{c^{3}} \int_{x_{N}}^{x_{E}} \frac{d x}{\sqrt{x^{2}+d^{2}}}$
(0.3 pt) Inside the logarithm: $\sqrt{x_{N}^{2}+d^{2}}+x_{N} \simeq \frac{d^{2}}{2\left|x_{N}\right|}$ and $\sqrt{x_{E}^{2}+d^{2}}-x_{E} \simeq \frac{d^{2}}{2 x_{E}}$ (C.2.4)

C. 3 (total 1.8 pt)

(1.8 pt)
$\Delta t_{\text {max }}-\Delta t_{\text {min }}=\frac{2 G M_{\mathrm{WD}}}{c^{3}} \log \left(4 / \varepsilon^{2}\right)$

- No reduction if log is written as ln.
partial points
$(0.6 \mathrm{pt}) \quad \Delta t_{\max }=\frac{2 G M_{\mathrm{WD}}}{c^{3}} \log \left(4 x_{E} / L \varepsilon^{2}\right)$
- No subtraction points if the factor in log is different but consistent with that in C.2.
- 0.1 pt is subtracted if the coefficient is wrong.
$(0.2 \mathrm{pt})$ Because of $x_{N}>0$ the approx. in log is changed: $x_{N}+\sqrt{x_{N}^{2}+d^{2}} \simeq 2 L$
$(0.4 \mathrm{pt}) \quad \Delta t_{\min }=\frac{2 G M_{\mathrm{WD}}}{c^{3}} \ln \left(x_{E} / L\right)$
- Points for (C.3.2) are given if (C.3.3) is stated although (C.3.2) is not explicitly written.
- 0.1 pt is subtracted if the coefficient is wrong.
(0.3 pt) Points are given if L and x_{E} dependence is canceled in log.
C. 4 (total 0.8 pt$)$
(0.8 pt)
$M_{\mathrm{WD}} / M_{\odot}=0.5$
- No reduction if the value is in the range $0.4-0.5$.
$(0.2 \mathrm{pt}) \quad \varepsilon^{2} \simeq 2 \times(1-0.99989)=0.00022$
$(0.2 \mathrm{pt})$ From the given graph, $\Delta t_{\max }-\Delta t_{\min } \approx 50 \mu \mathrm{~s}$
- No reduction if the value from the graph is in the range $40-50 \mu \mathrm{~s}$.

$$
\begin{equation*}
(0.2 \mathrm{pt}) \quad M_{\mathrm{WD}} / M_{\odot} \simeq 5 / \ln \left(4 / \varepsilon^{2}\right) \tag{C.4.3}
\end{equation*}
$$

- No reduction if the numerator is in the range $4-5$.
C. 5 (total 0.4 pt$)$
(0.4 pt)
$p=-\frac{3}{2} \quad$ or $\quad-1.5$
- No points if the sign is wrong.

> partial points
$(0.3 \mathrm{pt}) \quad R^{3} \omega^{2}=($ const. $)$
C. 6 (total 0.2 pt)
(0.2 pt)
The most appropriate profile is (b).

