Solution / marking scheme - Water and Objects (10 pt)

General rules

- In the following, "coefficients" refer to the numerical factors and do not include parameters.

Part A. Merger of water drops (2.0 pt)

A. 1 (total 2.0 pt)
(2.0 pt)
$v=0.23 \mathrm{~m} / \mathrm{s}$

- No deduction if the answer falls within the range $0.22 \mathrm{~m} / \mathrm{s} \leq v \leq 0.24 \mathrm{~m} / \mathrm{s}$
partial points
The surface energy per drop before the merger:

$$
\begin{equation*}
(0.4 \mathrm{pt}) \quad E=4 \pi a^{2} \gamma \tag{A.1.1}
\end{equation*}
$$

The surface energy difference:

$$
\begin{equation*}
(0.6 \mathrm{pt}) \quad \Delta E=4 \pi\left(2-2^{2 / 3}\right) a^{2} \gamma \tag{A.1.2}
\end{equation*}
$$

The transfer of surface energy to kinetic energy :

$$
\begin{equation*}
(0.4 \mathrm{pt}) \quad M v^{2} / 2=k \Delta E \tag{A.1.3}
\end{equation*}
$$

where $M=4 \pi a^{3} \rho / 3 \times 2=8 \pi a^{3} \rho / 3$ is the mass of the drop after the merger.

- No partial point will be given if the factor k is missing.

Numerical evaluation:

$$
v=\sqrt{\frac{2 k \Delta E}{M}}=\sqrt{3\left(2-2^{2 / 3}\right) \frac{k \gamma}{\rho a}}=\sqrt{3\left(2-2^{2 / 3}\right) \times \frac{0.06 \times\left(7.27 \times 10^{-2}\right)}{\left(1.0 \times 10^{3}\right) \times\left(100 \times 10^{-6}\right)}}=0.23 \not 2 \mathrm{~m} / \mathrm{s}
$$

Part B. A vertically placed board (4.5 pt)

B. 1 (total 0.6 pt)

Usable letters: ρ, g, z, P_{0}
(0.6 pt)
$P=P_{0}-\rho g z$

- No point will be given for $P=P_{0}+\rho g z$

Commentary
The expression, $P=P_{0}-\rho g z$, holds for both $z<0$ and $z>0$, as long as z is inside the water.
B. 2 (total 0.8 pt)

Usable letters: ρ, g, z_{1}, z_{2}
(0.8 pt)
$f_{x}=\frac{1}{2} \rho g\left(z_{2}^{2}-z_{1}^{2}\right)$

- Give 0.6 pt for $f_{x}=\rho g\left(z_{2}^{2}-z_{1}^{2}\right)$
- Give 0.4 pt for $f_{x}=\frac{1}{2} \rho g\left(z_{1}^{2}-z_{2}^{2}\right)$

Commentary
Because the atmospheric pressure P_{0} exerts no net horizontal force on the water block, we have

$$
f_{x}=\int_{z_{2}}^{z_{1}}(-\rho g z) d z=\frac{1}{2} \rho g\left(z_{2}^{2}-z_{1}^{2}\right)
$$

B. 3 (total 0.8 pt)

Usable letters: $\gamma, \theta_{1}, \theta_{2}$
(0.8 pt)

$$
f_{x}=\gamma \cos \theta_{1}-\gamma \cos \theta_{2}
$$

- Give 0.6 pt for $f_{x}=\gamma \cos \theta_{2}-\gamma \cos \theta_{1}$
- Give 0.4 pt for $f_{x}=\gamma \cos \theta_{2}+\gamma \cos \theta_{1}$ or $f_{x}=-\gamma \cos \theta_{2}-\gamma \cos \theta_{1}$.

B. 4 (total 0.8 pt)

(0.4 pt)

$a=2$

- No point will be given for $a \neq 2$.

Usable letters: γ, ρ
(0.4 pt)
$\ell=\sqrt{\frac{\gamma}{\rho g}}$

- If an unnecessary coefficient is included as a factor, 0.2 pt will be deducted.
B. 5 (total 1.5 pt)

Usable letters: $\tan \theta_{0}, \ell$
(1.5 pt)
$z(x)=-\ell \tan \theta_{0} e^{-x / \ell}$

- Deduct 0.2 pt for $z(x)=-\ell \sin \theta_{0} e^{-x / \ell}$ or $z(x)=-\ell \theta_{0} e^{-x / \ell}$.
partial points
$z^{\prime}=\tan \theta$ leads to

$$
\begin{align*}
& (0.2 \mathrm{pt}) \quad \cos \theta=\frac{1}{\sqrt{1+\left(z^{\prime}\right)^{2}}} \tag{B.5.1}\\
& (0.1 \mathrm{pt}) \quad \cos \theta \simeq 1-\frac{1}{2}\left(z^{\prime}\right)^{2} \tag{B.5.2}
\end{align*}
$$

Plug this into Eq.(1) to obtain,

$$
\begin{equation*}
(0.2 \mathrm{pt}) \quad \frac{z^{2}}{\ell^{2}}-z^{\prime 2}=\text { const. } \tag{B.5.3}
\end{equation*}
$$

Take the derivative of both sides with respect to x :

$$
\begin{equation*}
(0.5 \mathrm{pt}) \quad z^{\prime \prime}=\frac{z}{\ell^{2}} \tag{B.5.4}
\end{equation*}
$$

which is the differential equation which determines the water surface form.
General solution:

$$
\begin{equation*}
(0.2 \mathrm{pt}) \quad z=A e^{x / \ell}+B e^{-x / \ell} \tag{B.5.5}
\end{equation*}
$$

The boundary condition, $z(\infty)=0$, leads to

$$
\begin{equation*}
(0.1 \mathrm{pt}) \quad A=0 \tag{B.5.6}
\end{equation*}
$$

The boundary condition, $z^{\prime}(0)=\tan \theta_{0}$, leads to

$$
\begin{equation*}
(0.2 \mathrm{pt}) \quad B=-\ell \tan \theta_{0} \tag{B.5.7}
\end{equation*}
$$

Part C. Interaction between two rods (3.5 pt)

C. 1 (total 1.0 pt)

Usable letters: $\theta_{\mathrm{a}}, \theta_{\mathrm{b}}, z_{\mathrm{a}}, z_{\mathrm{b}}, \rho, g, \gamma$
(1.0 pt)

$$
F_{x}=\frac{1}{2} \rho g\left(z_{\mathrm{b}}^{2}-z_{\mathrm{a}}^{2}\right)+\gamma\left(\cos \theta_{\mathrm{b}}-\cos \theta_{\mathrm{a}}\right)
$$

- Give 0.8 pt for $F_{x}=\frac{1}{2} \rho g\left(z_{\mathrm{b}}^{2}-z_{\mathrm{a}}^{2}\right)+\gamma\left(\cos \theta_{\mathrm{a}}-\cos \theta_{\mathrm{b}}\right)$
- Give 0.6 pt for $F_{x}=\frac{1}{2} \rho g\left(z_{\mathrm{b}}^{2}-z_{\mathrm{a}}^{2}\right)+\gamma \cos \theta_{2}+\gamma \cos \theta_{1}$ or $F_{x}=\frac{1}{2} \rho g\left(z_{\mathrm{b}}^{2}-z_{\mathrm{a}}^{2}\right)-\gamma \cos \theta_{2}-$ $\gamma \cos \theta_{1}$.
partial points
The holizontal component of the force due to the pressure is
$(0.6 \mathrm{pt}) \quad \int_{z_{\mathrm{a}}}^{z_{\mathrm{b}}}(\rho g z) d z=\frac{1}{2} \rho g\left(z_{\mathrm{b}}^{2}-z_{\mathrm{a}}^{2}\right)$
Commentary
Comment 1: How to apply the experience in B. 1 is as follows. Let z_{bottom} the z-coordinate at the bottom of the rod, then from the discussion in B1, we see

$$
F_{x}=\int_{z_{\text {bottom }}}^{z_{\mathrm{a}}}(-\rho g z) d z+\left(-\int_{z_{\text {bottom }}}^{z_{\mathrm{b}}}(-\rho g z) d z\right)=\int_{z_{\mathrm{a}}}^{z_{\mathrm{b}}}(\rho g z) d z
$$

Comment 2: The fact that the contribution due to the pressure does not depend on the shape of the cross-section can be demonstrated as follows. The pressure at the point s on the contour C along the cross-sectional boundary is

$$
-P \hat{n} d s=\left(-P_{0}+\rho g\right) \hat{n} d s
$$

Let \hat{x} the unit vector pointing the positive x-direction and noting $\hat{x} \cdot \hat{n} d s=d z$ (see the figure shown below), the holizontal component becoms and its holizontal component becomes

$$
-P \hat{n} \cdot \hat{x} d s=-P_{0} d z+\rho g d z
$$

Integrating along the contour C, we obtain

$$
\oint_{C}(-P \hat{n} \cdot \hat{x} d s)=\int_{z_{\mathrm{a}}}^{z_{\mathrm{b}}}(\rho g z) d z=\frac{1}{2} \rho g\left(z_{\mathrm{b}}^{2}-z_{\mathrm{a}}^{2}\right)
$$

T3-5
C. 2 (total 1.5 pt)

Unusable letters: $\theta_{\mathrm{a}}, \theta_{\mathrm{b}}, z_{\mathrm{a}}, z_{\mathrm{b}}$
(1.5 pt)
$F_{x}=-\frac{1}{2} \rho g z_{0}^{2}$

- Give 1.3 pt for $F_{x}=-\rho g z_{0}^{2}$.
- Give 0.8 pt for $F_{x}=\frac{1}{2} \rho g z_{0}^{2}$.
partial points
Apply the boundary conditions to Eq. (1) to obtain

$$
\begin{equation*}
(0.6 \mathrm{pt}) \underbrace{\frac{1}{2} \rho g z_{\mathrm{a}}^{2}+\gamma \cos \theta_{\mathrm{a}}}_{x=x_{\mathrm{a}}}=\underbrace{\frac{1}{2} \rho g z_{0}^{2}+\gamma}_{x=0} \tag{C.2.1}
\end{equation*}
$$

- Give 0.4 pt for $\rho g z_{\mathrm{a}}^{2}+\gamma \cos \theta_{\mathrm{a}}=\rho g z_{0}^{2}+\gamma$

$$
\begin{equation*}
(0.6 \mathrm{pt}) \underbrace{\frac{1}{2} \rho g z_{\mathrm{b}}^{2}+\gamma \cos \theta_{\mathrm{b}}}_{x=x_{\mathrm{b}}}={\underset{x \rightarrow \infty}{\gamma}}_{\underset{\sim}{x}} \tag{C.2.2}
\end{equation*}
$$

- Give 0.4 pt for $\rho g z_{\mathrm{b}}^{2}+\gamma \cos \theta_{\mathrm{b}}=\rho g z_{0}^{2}$
F_{x} is obtained by subtracting (C2.1) from (C2.2).

C. 3 (total 1.0 pt)

Usable letters: $x_{\mathrm{a}}, z_{\mathrm{a}}$
(1.0 pt)

$$
z_{0}=\frac{2 z_{\mathrm{a}}}{e^{x_{\mathrm{a}} / \ell}+e^{-x_{\mathrm{a}} / \ell}}
$$

- Correct alternative answer: $z_{0}=\frac{z_{\mathrm{a}}}{\cosh \left(x_{\mathrm{a}} / \ell\right)}=z_{\mathrm{a}} \operatorname{sech}\left(x_{\mathrm{a}} / \ell\right)$
partial points
General solution: $z(x)=A e^{x / \ell}+B e^{-x / \ell}$
Taking into account the left-right symmetry, we obtain,

$$
\begin{equation*}
(0.3 \mathrm{pt}) \quad A=B \tag{С.3.1}
\end{equation*}
$$

Boundary condition, $z(0)=z_{0}$ leads to

$$
\begin{equation*}
(0.3 \mathrm{pt}) \quad A+B=z_{0} \tag{С.3.2}
\end{equation*}
$$

Find the coefficients:

$$
\begin{equation*}
(0.2 \mathrm{pt}) \quad A=z_{0} / 2 \tag{C.3.3}
\end{equation*}
$$

(0.2 pt) $\quad B=z_{0} / 2$

