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Hydrogen and galaxies (10 points)
This problem aims to study the peculiar physics of galaxies, such as their dynamics and structure. In
particular, we explain how to measure the mass distribution of our galaxy from the inside. For this we
will focus on hydrogen, its main constituent.

Throughout this problem we will only use ħ, defined as ħ=ℎ/2𝜋.

Part A - Introduction
Bohr model

We assume that the hydrogen atom consists of a non-relativistic electron, with mass𝑚𝑒, orbiting a fixed
proton. Throughout this part, we assume its motion is on a circular orbit.

A.1 Determine the electron's velocity 𝑣 in a circular orbit of radius 𝑟. 0.2pt

SOLUTION:

Newton's second law on the electron in the electrical field of the proton for a circular orbit and projected

on −→𝑢𝑟 : −𝑚𝑒
𝑣2
𝑟 =− 𝑒2

4𝜋𝜀0𝑟2 hence 𝑣 = 𝑒2
4𝜋𝜀0𝑚𝑒𝑟

Marking Scheme

A.1.1 : Using Newton's second law 0.1
A.1.2 : Expression of the velocity 0.1

In the Bohrmodel, we assume themagnitude of the electron's angularmomentum 𝐿 is quantized, 𝐿 = 𝑛ħ
where 𝑛 > 0 is an integer. We define 𝛼 = 𝑒2

4𝜋𝜀0ħ𝑐 ≈ 7.27×10−3.

A.2 Show that the radius of each orbit is given by 𝑟𝑛 = 𝑛2𝑟1, where 𝑟1 is called the
Bohr radius. Express 𝑟1 in terms of 𝛼, 𝑚𝑒, 𝑐 and ħ and calculate its numerical
value with 3 digits. Express 𝑣1, the velocity on the orbit of radius 𝑟1, in terms of
𝛼 and 𝑐.

0.5pt

SOLUTION:

If the norm 𝐿 of the angular momentum is quantified, for a circular orbit of radius 𝑟𝑛 it is 𝐿 =𝑚𝑒𝑟𝑛𝑣𝑛 =𝑛ħ.
In the previous question, we have already obtained a relation between 𝑟 and 𝑣 that can be used for 𝑟𝑛
and 𝑣𝑛 and gives 𝑣𝑛 = 𝑒2

4𝜋𝜖0𝑚𝑒𝑟𝑛 = 𝛼ħ𝑐
𝑚𝑒𝑟𝑛 . Then using the quantifed expression we get 𝑟𝑛 =

𝑛ħ
𝑚𝑒𝑣𝑛 =

𝑛ħ
𝑚𝑒

𝑚𝑒𝑟𝑛
𝛼ħ𝑐

thus 𝑟𝑛 = ħ𝑛2
𝛼𝑚𝑒𝑐 and then 𝑟1 = ħ

𝛼𝑚𝑒𝑐 . For the numerical value we previously compute 𝛼 = 7.27×10−3 and

then 𝑟1 = 5.31×10−11 m . For the velocity, we get𝑚𝑒𝑣21 = 𝑒2
4𝜋𝜀0𝑟1 =

𝑒2𝑚𝑒𝑣1
4𝜋𝜀0ħ and then 𝑣1 = 𝑒2

4𝜋𝜀0ħ =𝛼𝑐 .
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A.2.1 : Expression of 𝑟𝑛 0.1
A.2.2 : Expression of 𝑟1 0.1
A.2.3 : Numerical value for 𝑟1 0.1
A.2.4 : Expression of 𝑣1 0.2

A.3 Determine the electron's mechanical energy 𝐸𝑛 on an orbit of radius 𝑟𝑛in terms
of 𝑒, 𝜀0, 𝑟1 and 𝑛. Determine 𝐸1 in the ground state in terms of 𝛼, 𝑚𝑒 and 𝑐.
Compute its numerical value in eV.

0.5pt

SOLUTION:

The mechanical energy is 𝐸𝑛 = 1
2𝑚𝑒𝑣2𝑛 − 𝑒2

4𝜋𝜀0𝑟𝑛 = − 𝑒2
8𝜋𝜀0𝑟𝑛 , hence 𝐸𝑛 =− 𝑒2

8𝜋𝜀0𝑛2𝑟1 then for the ground state

𝐸1 =− 𝑒2
8𝜋𝜀0𝑟1 . Using the expression of 𝛼 , we get the beautiful formula 𝐸1 =− 1

2𝛼2𝑚𝑒𝑐2 . The numerical

value is 𝐸1 =−2.17×10−18 J which corresponds to 𝐸1 =−13.6 eV .

Marker Scheme

A.3.1 : Expression for 𝐸𝑛 0.2
A.3.2 : Expression for 𝐸1 with 𝛼 0.2
A.3.3 : Numerical value for 𝐸1 0.1

Hydrogen fine and hyperfine structures

The rare spontaneous inversion of the electron's spin causes a photon to be emitted on average once
per 10million years per hydrogen atom. This emission serves as a hydrogen tracer in the universe and is
thus fundamental in astrophysics. We will study the transition responsible for this emission in two steps.

First, consider the interaction between the electron spin and the relative motion of the electron and the
proton. Working in the electron's frame of reference, the proton orbits the electron at a distance 𝑟1. This
produces a magnetic field

−→𝐵1.

A.4 Determine the magnitude 𝐵1 of
−→𝐵1 at the position of the electron in terms of 𝜇0,

𝑒, 𝛼, 𝑐 and 𝑟1.
0.5pt

SOLUTION:

The period of the motion is : 𝑇 = 2𝜋𝑟1
𝑣1 .

The current 𝑖 corresponding to the orbit of the proton is 𝑖 = 𝑒
𝑇 hence 𝑖 = 𝑒𝑣1

2𝜋𝑟1 =
𝑒𝛼𝑐
2𝜋𝑟1 .

Themagnetic field created by a loop with current 𝑖 and radius 𝑅 is : 𝐵 = 𝜇0𝑖
2𝑅 , which here gives 𝐵1 = 𝜇0𝑒𝛼𝑐

4𝜋𝑟21.

Marker Scheme
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A.4.1 : Expression for the period 0.1
A.4.2 : Expression for the current 0.2
A.4.3 : General expression for 𝐵 0.1
A.4.4 : Inject 𝑖 into 𝐵 0.1

Second, the electron spin creates a magnetic moment
−→ℳ𝑠. Its magnitude is roughlyℳ𝑠 = 𝑒

𝑚𝑒
ħ. The fine

(F) structure is related to the energy difference 𝛥𝐸F between an electron with a magnetic moment
−→ℳ𝑠

parallel to
−→𝐵1 and that of an electron with

−→ℳ𝑠 anti-parallel to
−→𝐵1. Similarly, the hyperfine (HF) structure is

related to the energy difference 𝛥𝐸HF, due to the interaction between parallel and anti-parallel magnetic
moments of the electron and the proton. It is known to be approximately 𝛥𝐸HF ≃ 3.72𝑚𝑒

𝑚𝑝
𝛥𝐸F where𝑚𝑝 is

the proton mass.

A.5 Express 𝛥𝐸F as a function of 𝛼 and 𝐸1.
Express the wavelength 𝜆HF of a photon emitted during a transition between
the two states of the hyperfine structure and give its numerical value with two
digits.

0.5pt

SOLUTION:

The potential energy corresponding to the interaction between the spin magnetic moment
−→ℳ𝑠 and the

nuclear magnetic field : 𝐸𝑝 =−−→ℳ𝑠 ⋅
−→𝐵1

The difference 𝛥𝐸F between the energy of two electrons with a spin parallel and antiparallel to
−→𝐵1

is then 𝛥𝐸F = 2ℳ𝑠𝐵1 . Using previous expressions one finds: 𝛥𝐸F = 2 𝑒
𝑚𝑒

ħ𝐵1 = 2 𝑒
𝑚𝑒

ħ𝜇0𝑒𝛼𝑐
4𝜋𝑟21

which writes

𝛥𝐸F =−4𝛼2𝐸1 hence 𝛥𝐸HF =−3.72𝑚𝑒
𝑚𝑝

4𝛼2𝐸1.

The wavelength of the photon corresponding to this transition is then ℎ𝑐
𝜆HF =𝛥𝐸HF =−3.72.𝑚𝑒

𝑚𝑝
4𝛼2𝐸1 hence

𝜆HF =− ℎ𝑐
3.72.𝑚𝑒

𝑚𝑝 4𝛼
2𝐸1

whose value is 𝜆HF = 21 cm .

Marker Sheme

A.5.1 : Expression for the potential energy 0.1
A.5.2 : Expression for 𝛥𝐸F 0.1
A.5.3 : Expression for 𝛥𝐸HF in term of 𝛼 0.1
A.5.4 : Expression for 𝜆HF 0.1
A.5.5 : Numerical value for 𝜆HF 0.1

Part B - Rotation curves of galaxies
Data

• Kiloparsec: 1kpc= 3.09×1019m
• Solar mass : 1M⊙ = 1.99×1030 kg
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We consider a spherical galaxy centered around a fixed point 𝑂. At any point 𝑃 , let 𝜌 = 𝜌(𝑃) be the
volumetric mass density and 𝜑 = 𝜑(𝑃) the associated gravitational potential (i.e. potential energy per
unit mass). Both 𝜌 and 𝜑 depend only on 𝑟 = ‖

−−→𝑂𝑃‖. The motion of a mass𝑚 located at 𝑃 , due to the field
𝜑, is restricted to a plane containing 𝑂.

B.1 In the case of a circular orbit, determine the velocity 𝑣𝑐 of an object on a circular
orbit passing through 𝑃 in terms of 𝑟 and 𝑑𝜑

𝑑𝑟 .
0.2pt

SOLUTION:

The force created by the potential is
−→𝐹 = −−→∇(𝑚𝜑(𝑟)) = −𝑚 𝑑𝜑

𝑑𝑟
−→𝑢𝑟 . Newton's second law for a circular orbit

then gives𝑚 𝑣2𝑐
𝑟 =𝑚 𝑑𝜑

𝑑𝑟 hence 𝑣𝑐 =𝑟 𝑑𝜑𝑑𝑟 .

SOLUTION:

B.1.1 : Using Newton's second law 0.1
B.1.2 : Expression for the velocity. 0.1

Fig. 1(A) is a picture of the spiral galaxy NGC 6946 in the visible band (from the 0.8m Schulman Telescope
at the Mount Lemmon Sky Center in Arizona). The little ellipses in Fig. 1(B) show experimental measure-
ments of 𝑣𝑐 for this galaxy. The central region (𝑟 < 1kpc) is named the bulge. In this region, the mass
distribution is roughly homogeneous. The red curve is a prediction for 𝑣𝑐 if the system were homoge-
neous in the bulge and keplerian (𝜑(𝑟) = −𝛽/𝑟 with 𝛽 > 0) outside it, i.e. considering that the total mass
of the galaxy is concentrated in the bulge.

Fig. 1: NGC 6946 galaxy: Picture (A) and rotation curve (B).

B.2 Deduce the mass 𝑀𝑏of the bulge of NGC 6946 from the red rotation curve in
Fig. 1(B), in solar mass units.

0.5pt

SOLUTION:

Either by Gauss's theorem 4𝜋𝑟2𝑔(𝑟) = −4𝜋𝐺𝑀int(𝑟) , then one gets 𝑔(𝑟) = 𝐺𝑀int(𝑟)/𝑟2. or one knows the
law 𝑔(𝑟) = 𝐺𝑀/𝑟2 and intuits that one can use the interior mass 𝑔(𝑟) = 𝐺𝑀int(𝑟)/𝑟2
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If there is almost no more mass after the bulge radius 𝑟𝑏

then if 𝑟 > 𝑟𝑏,𝑀int(𝑟) =𝑀𝑏 and 𝑔⃗(𝑟 > 𝑟𝑏) = −𝐺𝑀𝑏
𝑟2 𝑢⃗𝑟 . But 𝑔⃗ = −𝑑𝜑

𝑑𝑟 𝑢⃗𝑟 .

This gives 𝑣𝑐(𝑟 > 𝑟𝑏) =𝐺𝑀𝑏
𝑟 .

One can then deduce that if the velocity is given only by the bulge, at a given distance 𝑅 we
must have 𝑀𝑏 = 𝑣2𝑐𝑅/𝐺 . On the red curve we can read 𝑣𝑐 = 20 km ⋅ s−1 at 𝑅 = 10 kpc hence

𝑀𝑏 = 𝑣2𝑐𝑅
𝐺 ≃ 4.108×3.1020

6,7.10−11 ≃ 1,8.1039 kg so that 𝑀𝑏 ≃ 9.108𝑀⊙ .

Marker Scheme

B.2.1 : 𝑔(𝑟) = 𝐺𝑀int(𝑟)/𝑟2 via Gauss' Theorem or another
method resulting in an equivalent result.

0.1

B.2.2 : Expression for 𝑔⃗(𝑟 > 𝑟𝑏) 0.1
B.2.3 : Expression for𝑀𝑏 0.1
B.2.4 : Taking the right value of 𝑣𝑐 in the figure 0.1
B.2.5 : Numerical value for𝑀𝑏 with a tolerance of ±25% 0.1

Comparing the keplerian model and the experimental data makes astronomers confident that part of
the mass is invisible in the picture. They thus suppose that the galaxy's actual mass density is given by

𝜌𝑚(𝑟) =
𝐶𝑚

𝑟2𝑚+𝑟2 (1)

where 𝐶𝑚 > 0 and 𝑟𝑚 > 0 are constants.

B.3 Show that the velocity profile 𝑣𝑐,𝑚(𝑟), corresponding to the mass density in Eq.

1, can be written 𝑣𝑐,𝑚(𝑟) =𝑘1−
𝑘2⋅arctan( 𝑟

𝑟𝑚 )
𝑟 . Express 𝑘1 and 𝑘2 in terms of 𝐶𝑚, 𝑟𝑚

and 𝐺 .
( Hints: 

𝑟

0

𝑥2
𝑎2+𝑥2𝑑𝑥 = 𝑟 −𝑎 arctan(𝑟/𝑎), and: arctan(𝑥) ≃ 𝑥−𝑥3/3 for 𝑥≪ 1. )

 
Simplify 𝑣𝑐,𝑚(𝑟) when 𝑟 ≪ 𝑟𝑚 and when 𝑟 ≫ 𝑟𝑚.
Show that if 𝑟 ≫ 𝑟𝑚, the mass𝑀𝑚(𝑟) embedded in a sphere of radius 𝑟 with the
mass density given by Eq. 1 simplifies and depends only on 𝐶𝑚 and 𝑟.
Estimate the mass of the galaxy NGC 6946 actually present in the picture in Fig.
1(A).

1.8pt

SOLUTION:

On the one hand, writing Gauss' theorem on a sphere of radius 𝑟 gives ∫−→𝑔(𝑟) ⋅−→𝑑𝑆 = 4𝜋𝑟2𝑔(𝑟) = −4𝜋𝐺𝑀int
and thus 𝑔(𝑟) = 𝐺𝑀int(𝑟)/𝑟2. As long as this final formula is given it doesn't matter the method.

But, on the other hand𝑀int =∫𝑟
0 4𝜋𝑥2𝜌(𝑥)𝑑𝑥 = 4𝜋𝐶𝑚 𝑟 −𝑟𝑚 arctan ⒧ 𝑟

𝑟𝑚 ⒭ hence

𝑔𝑚(𝑟) = − 4𝜋𝐶𝑚𝐺𝑟−𝑟𝑚 arctan⒧ 𝑟
𝑟𝑚 ⒭

𝑟2 (2)
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But as −𝑚 𝑣2𝑐,𝑚
𝑟 =−𝑚𝑔𝑚(𝑟) we finally get 𝑣𝑐,𝑚 =√𝑟𝑔𝑚(𝑟) wich writes

𝑣𝑐,𝑚 =

⎷
4𝜋𝐶𝑚𝐺 𝑟 −𝑟𝑚 arctan ⒧ 𝑟

𝑟𝑚 ⒭
𝑟 (3)

One can then read 𝑘1 = 4𝜋𝐶𝑚𝐺 and 𝑘2 = 4𝜋𝐶𝑚𝐺𝑟𝑚
Two regime could be considered:

• if 𝑟 ≪ 𝑟𝑚 , a third order Taylor expansion of arctan gives 𝑣𝑐,𝑚 ≃ 4𝜋𝐶𝑚𝐺𝑟2
3𝑟2𝑚

,

• and if 𝑟 ≫ 𝑟𝑚 then arctan ⒧ 𝑟
𝑟𝑚 ⒭ ≃ 𝜋/2 and 𝑣𝑐,𝑚 ≃√4𝜋𝐶𝑚𝐺 .

The function 𝑣𝑐,𝑚(𝑟) is vanishing when 𝑟 → 0 and is asymptotically constant with value √4𝜋𝐶𝑚𝐺 when
𝑟 →+∞ : this corresponds to the observational curve for the galaxy considered (black circles on the right
part of figure 1(B). A natural interpretation for 𝑟𝑚 is the typical radius beyond which the circular velocity
is constant. On this picture one can read 𝑣𝑐 ≃ 160km ⋅ s−1 for the constant value of 𝑣𝑐,𝑚 after 𝑟𝑚, then one
can deduce 𝐶𝑚 = 𝑣2𝑐

4𝜋𝐺 ≃ (1,6.105)2
4𝜋×6.67.10−11 ≃ 3.1019 kg ⋅m−1. The mass embedded in a sphere of radius 𝑟 is given by

𝑀int =∫𝑟
0 4𝜋𝑥2𝜌𝑚(𝑥)𝑑𝑥 = 4𝜋𝐶𝑚 𝑟 −𝑟𝑚 arctan ⒧ 𝑟

𝑟𝑚 ⒭which reduces to𝑀int ≃ 4𝜋𝐶𝑚𝑟 if 𝑟 ≫ 𝑟𝑚 . In the picture we

have a radius 𝑅 = 9kpc = 2.27× 1020m of the galaxy, then a mass 𝑀inthefigure ≃ 4𝜋𝐶𝑚𝑅 ≃ 1041 kg≃ 1011M⊙ .
This mass corresponds to more than ten times the value of the mass actually visible in this picture : this
is the dark matter concept.

Marker Scheme

B.3.1 : 𝑔(𝑟) = 𝐺𝑀int(𝑟)/𝑟2 via Gauss' Theorem or another
method resulting in an equivalent result.

0.2

B.3.2 : Interior mass 0.3
B.3.3. : Expression for 𝑔(𝑟) 0.1
B.3.4 : Using Newton's second law 0.1
B.3.5 : Expression for 𝑘1 0.1
B.3.6 : Expression for 𝑘2 0.1
B.3.7 : Simplification for 𝑣𝑐 in the case 𝑟 ≪ 𝑟𝑚 0.2
B.3.8 : Simplification for 𝑣𝑐 in the case 𝑟 ≫ 𝑟𝑚 0.2
B.3.9 : Value of 𝐶𝑚 0.2
B.3.10 : Expression for𝑀𝑚 in the case 𝑟 ≫ 𝑟𝑚 0.2
B.3.11 : Mass in the figure (good if nearest power of ten) 0.1

Part C - Mass distribution in our galaxy
For a spiral galaxy, the model for Eq. 1 is modified and one usually considers the gravitational potential

is given by 𝜑𝐺 (𝑟,𝑧) = 𝜑0 ln⒧
𝑟
𝑟0
⒭exp⎡

⎣
−⒧ 𝑧𝑧0

⒭
2⎤
⎦
, where 𝑧 is the distance to the galactic plane (defined by 𝑧 = 0

), and 𝑟 < 𝑟0 is now the axial radius and 𝜑0 > 0 a constant to be determined. 𝑟0 and 𝑧0 are constant values.
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C.1 Find the equation of motion on 𝑧 for the vertical motion of a point mass 𝑚
in such a potential, assuming 𝑟 is constant. Show that, if 𝑟 < 𝑟0, the galactic
plane is a stable equilibrium state by giving the angular frequency 𝜔0 of small
oscillations around it.

0.5pt

SOLUTION:

The equation of motion is given by Newton's second law 𝑚−→𝑎 = −→𝐹 = −𝑚−→∇𝜑, projected on −→𝑢𝑧, it gives

𝑚𝑧̈ = −𝑚 𝜕𝜑
𝜕𝑧 . Using the given potential we have 𝑧̈ = 2𝑧

𝑧20
𝜑0 ln ⒧ 𝑟𝑟0 ⒭exp−⒧

𝑧
𝑧0 ⒭

2
 . Near the galactic plane (

𝑧 = 0 ) the exponential is equal to 1 and can be simplified to give 𝑧̈ ≃ 2𝑧
𝑧20
𝜑0 ln ⒧ 𝑟𝑟0 ⒭ . If 𝑟 < 𝑟0 the ln is negative

and the equation ofmotion is of the form 𝑧̈ ≃ −𝜔2
0𝑧with 𝜔0 = 2𝜑0

𝑧20
|ln ⒧ 𝑟𝑟0 ⒭

| . This proves that 𝑧 is oscillating

around 𝑧 = 0 and that the motion is stable.

Marker Scheme

C.1.1 : Newton's second law, or equivalent method 0.1
C.1.2 : Projection on the z axis 0.1
C.1.3 : Equation of motion 0.1
C.1.4 : Equation near the galactic plane 0.1
C.1.5 : Expression for 𝜔0 0.1

From here on, we set 𝑧 = 0.

C.2 Identify the regime, either 𝑟 ≫ 𝑟𝑚or 𝑟 ≪ 𝑟𝑚, in which themodel of Eq. 1 recovers
a potential of the form 𝜑𝐺 (𝑟,0) with a suitable definition of 𝜑0.
Under this condition 𝑣𝑐(𝑟) no longer depends on 𝑟. Express it in terms of 𝜑0.

0.6pt

SOLUTION:

Using the density given by equation (1) in part B, we have obtained

𝑔𝑚(𝑟) = −
4𝜋𝐶𝑚𝐺 𝑟 −𝑟𝑚 arctan ⒧ 𝑟

𝑟𝑚 ⒭
𝑟2 (4)

Hence, considering 𝑟 ≫ 𝑟𝑚 , one can simplify this relation to 𝑔𝑚(𝑟) ≃ −4𝜋𝐶𝑚𝐺𝑟 . The gravitational potential

can be obtained by integration, we then have : 𝜑(𝑟) = +4𝜋𝐶𝑚𝐺 ln(𝑟)+cst . The constant can be found by

correctly choosing the origin of the potential. This potential corresponds to: 𝜑𝐺 (𝑟,𝑧 = 0) = 𝜑0 ln ⒧ 𝑟𝑟0 ⒭ with
𝜑0 =+4𝜋𝐶𝑚𝐺 . In that case, the equation of motion in the galactic plane gives −𝑚 𝑣2𝑐

𝑟 = −𝑚𝑔𝑚(𝑟) which
writes 𝑣𝑐 =√𝑟𝑔𝑚(𝑟) =√4𝜋𝐶𝑚𝐺 , so that 𝑣𝑐 =√𝜑0 .

Marker Scheme
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C2.1 : Condition for simplication 𝑟 ≫ 𝑟𝑚 0.1
C2.2 : Expression for 𝜑(𝑟) 0.2
C2.3 : Identification of 𝜑0 0.1
C2.4 : Newton's second law 0.1
C2.5 : Expression for 𝑣𝑐 0.1

Therefore, outside the bulge the velocity modulus 𝑣𝑐 does not depend on the distance to the galactic
center. We will use this fact, as astronomers do, to measure the galaxy's mass distribution from the
inside.

All galactic objects considered here for astronomical observations, such as stars or nebulae, are primarily
composed of hydrogen. Outside the bulge, we assume that they rotate on circular orbits around the
galactic center 𝐶 . 𝑆 is the sun's position and 𝐸 that of a given galactic object emitting in the hydrogen
spectrum. In the galactic plane, we consider a line of sight 𝑆𝐸 corresponding to the orientation of an
observation, on the unit vector 𝑢𝑣 (see Fig. 2).

Fig. 2: Geometry of the measurement

Let ℓ be the galactic longitude, measuring the angle between 𝑆𝐶 and the 𝑆𝐸. The sun's velocity on its
circular orbit of radius 𝑅⊙ = 8.00kpc is denoted −→𝑣⊙. A galactic object in 𝐸 orbits on another circle of radius
𝑅 at velocity −→𝑣𝐸. Using a Doppler effect on the previously studied 21cm line, one can obtain the relative
radial velocity 𝑣𝑟𝐸/𝑆 of the emitter 𝐸 with respect to the sun 𝑆 : it is the projection of ⃗𝑣𝐸 − ⃗𝑣⊙ on the line of
sight.

C.3 Determine 𝑣𝑟𝐸/𝑆 in terms of ℓ, 𝑅, 𝑅⊙ and 𝑣⊙. Then, express 𝑅 in terms of 𝑅⊙, 𝑣⊙,
ℓ and 𝑣𝑟𝐸/𝑆 .

0.7pt

SOLUTION:

We have
−→𝑆𝑠 = 𝑣⊙ sin(𝛼) 𝑢𝑣 and

−→𝐸𝑒 = 𝑣𝐸 cos(𝛽) 𝑢𝑣 . In the right triangle 𝑆𝑠𝑆𝑣 the sum of angles gives
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
⒧−→𝑆𝑠,−−→𝑆𝑆𝑣⒭ = 𝜋

2 −𝛼, but, as ⃗𝑣⊙ is perpendicular to the radius 𝐶𝑆, we also have

⒧−→𝑆𝑠,−−→𝑆𝑆𝑣⒭ = 𝜋

2 −ℓ : then 𝛼 = ℓ.

On the other side, we have 𝐶𝑇 = 𝑅⊙ sin(ℓ) = 𝑅 sin(𝜋2 −𝛽), which gives cos(𝛽) = 𝑅⊙
𝑅 sin(ℓ) . Merging all of

these results and taking into account that 𝑣𝐸 = 𝑣⊙ and that ⃗𝑣𝑟𝐸/𝑆 =
−→𝐸𝑒−−→𝑆𝑠 we have 𝑣𝑟𝐸/𝑆 = 𝑣⊙ ⒧𝑅⊙𝑅 −1⒭sin(ℓ)

and finally 𝑅 = 𝑅⊙
1+ 𝑣𝑟𝐸/𝑆

𝑣⊙ sin(ℓ)
.

Marker Scheme

C3.1 : Expression for
−→𝑆𝑠 0.1

C3.2 : Expression for
−→𝐸𝑒 0.1

C3.3 : 𝛼 = ℓ 0.1
C3.4 : Expression for cos(𝛽) 0.1
C3.5 : Expression for 𝑣𝑟,𝐸/𝑆 0.2
C3.6 : Expression for 𝑅 0.1

Using a radio telescope, wemake observations in the plane of our galaxy toward a longitude ℓ = 30°. The
frequency band used contains the 21cm line, whose frequency is 𝑓0 = 1.42GHz. The results are reported
in Fig. 3.

Fig. 3: Electromagnetic signal as a function of the frequency shift, measured in the radio
frequency band at ℓ = 30° using EU-HOU RadioAstronomy

C.4 In our galaxy, 𝑣⊙ = 220km ⋅ s−1. Determine the values of the relative radial ve-
locity (with 3 significant digits) and the distance from the galactic center (with
2 significant digits) of the 3 sources observed in Fig. 3. Distances should be
expressed as multiples of 𝑅⊙.

0.6pt

SOLUTION:

In Fig. 3 one can measure the 3 frequency shifts ( 𝑓 −𝑓0 ) corresponding to each peak : 𝛥𝑓1 = 0.03MHz ,
𝛥𝑓2 = 0.15MHz and 𝑓3 = 0.26MHz. One can then compute the relative Doppler velocity using 𝑣𝑟,𝑖 = 𝑐𝛥𝑓𝑖/𝑓0
, with 𝑓0 = 1420MHz one gets
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• 𝑣𝑟,1 = 6.33 km ⋅ s−1

• 𝑣𝑟,2 = 31.7 km ⋅ s−1

• 𝑣𝑟,3 = 54.9 km ⋅ s−1

As peaks are placed on grid points, the tolerance in the value is due to fact that candidates could use
𝑐 = 3.00×108m/s in the place of the 9 digits given in the formulary.

The corresponding distances from the galactic center are then obtained using the relation 𝑅𝑖 = 𝑅⊙
1+ 𝑣𝑟,𝑖

𝑣⊙ sinℓ
,

with ℓ = 30° we obtain :

• 𝑅1 = 0.95𝑅⊙

• 𝑅2 = 0.78𝑅⊙

• 𝑅3 = 0.67𝑅⊙
Marker Scheme

C4.1 : Doppler formula for 𝑣𝑟 0.1
C4.2 : Getting the 3 numerical values for 𝛥𝑓 0.2

C4.3 : Numerical values of the 3 velocities (±0.01 km ⋅ s−1) 0.2
C4.4 : Numerical values of the 3 distances (±0.01𝑅⊙) 0.1

C.5 On the top view of our galaxy (in the answer box), indicate the positions of the
sources observed in Fig. 3.
What could be deduced from repeated measurements changing ℓ?

0.6pt

SOLUTION:

As indicated on the figure below, the right line of sight could be obtained geometrically (i.e. without
protractor) : using the 15° grid graduation one can going back from 30° from the perpendicular line to
CS, we then obtain a radius which perpendicular to the line of sight, in other words as sin(30°)=0.5 the
line of sight is passing by S and is tangenting the circle of radius CS/2.

Drawing the circles or radius , and , the line of sight with from we get 2 possible intersection for each
peak : a near one and a far one. We plot only the nearest for each source on the answer figure.
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The far intersections for each source is much further away and hence is likely less intense. Astronomers
could also use the variation in the radio signal when they slowly vary the longitude to determine the
right position of the actual source. A continuous variation of ℓ in the interval [0,2𝜋] makes hydrogen
sources appear in the galaxy, as the galaxy is essentially composed of hydrogen, one can trace its mass
distribution : i.e. the spiral structure.

Marker Scheme

C5.1 : Getting the right line of sight 0.1
C5.2 : Drawing for the 3 circles 0.2
C5.3 : Drawing for the 3 points 0.2
C5.4 : Deduction 0.1

Part D - Tully-Fisher relation and MOND theory
The flat external velocity curve of NGC 6946 in Fig. 1 is a common property of spiral galaxies, as can
be seen in Fig. 4 (left). Plotting the external constant velocity value 𝑣𝑐,∞ as a function of the measured
total mass𝑀tot of each galaxy gives an interesting correlation called the Tully-Fischer relation, see Fig. 4
(right).
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Fig. 4. Left: Rotation curves for typical spiral galaxies - Right: log10(𝑀tot) as a function of
log10(𝑣𝑐,∞) on linear scales. Colored dots correspond to different galaxies and different sur-
veys. The green line is the Tully-Fischer relation which is in very good agreement with the best
fit line of the data (in black).

D.1 Assuming that the radius 𝑅 of a galaxy doesn't depend on its mass, show that
the model of Eq. 1 (part B) gives a relation of the form𝑀tot = 𝜂𝑣𝛾𝑐,∞ where 𝛾 and
𝜂 should be specified.
Compare this expression to the Tully-Fischer relation by computing 𝛾𝑇𝐹.

0.4pt

SOLUTION:

We have obtained 𝑣2𝑐,∞ = 4𝜋𝐶𝑚𝐺 and for a galaxy of radius 𝑅 , we have𝑀tot ≃ 4𝜋𝐶𝑚𝑅. This gives 𝐶𝑚 = 𝑀tot
4𝜋𝑅

and 𝑣2𝑐,∞ = 4𝜋𝑀tot
4𝜋𝑅𝐺 . This relation is of the expected form𝑀tot = 𝜂𝑣𝛾𝑐,∞ with 𝛾 = 2 and 𝜂 = 𝑅/𝐺 . Analysing

the data we get the power law exponent of the Tully-Fisher relation as 𝛾𝑇𝐹 ≃ 12−9
2.6−1.8 = 3.75 : the dark

matter model from part B is not able to reproduce this law.

Marker Scheme

D1.1 : Recall for 𝑣𝑐,∞ 0.1
D1.2 : Expression for 𝜂 0.1
D1.3 : Expression for 𝛾 0.1
D1.4 : Numerical value for 𝛾𝑇𝐹 (correct if it is between 3.5
and 4)

0.1

In the extremely low acceleration regime, of the order of 𝑎0 = 10−10m ⋅ s−2, the MOdified Newtonian Dy-

namics (MOND) theory suggests that one can modify Newton's second law using
−→𝐹 = 𝑚𝜇⒧ 𝑎𝑎0

⒭−→𝑎 where

𝑎 = ‖−→𝑎‖ is the modulus of the acceleration and the 𝜇 function is defined by 𝜇(𝑥) = 𝑥
1+𝑥 .
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D.2 Using data for NGC 6946 in Fig. 1, estimate, within Newton's theory, the mod-
ulus of the acceleration 𝑎𝑚 of a mass in the outer regions of NGC 6946.

0.2pt

SOLUTION:

Considering that outer orbits are circular, the corresponding acceleration for a test mass𝑚 is radial and
given in newtonian theory by 𝑎𝑚 ≃ 𝑣2𝑐 /𝑅 . In the case of NGC 6946, the value of the velocity is roughly
constant and equal to 𝑣𝑐 = 160km ⋅ s−1 as far 𝑅 > 5 kpc. For this smallest distance from the center, the

acceleration is 𝑎𝑚 = (1.6.105)2
5.3.1019 ≃ 1.5×10−10m ⋅ s−2 , this value is the maximal acceleration to which as star is

submitted in the outer regions of this galaxy. It corresponds to the MOND regime.

Marker Scheme

D2.1 : Expression for 𝑎𝑚 0.1
D2.2 : Numerical value for 𝑎𝑚 (good nearest power of ten) 0.1

D.3 Let 𝑚 be a mass on a circular orbit of radius 𝑟 with velocity 𝑣𝑐,∞ in the gravity
field of a fixed mass𝑀 .
Within the MOND theory, with 𝑎 ≪𝑎0, determine the Tully-Fischer exponent.
Using data for NGC 6946 and/or Tully-Fischer law, calculate 𝑎0 to show that
MOND operates in the correct regime.

0.8pt

SOLUTION:

If 𝑥 = 𝑎/𝑎0 ≪ 1, then 𝜇(𝑥 ≪ 1) ≃ 𝑥 and MOND theory gives
−→𝐹 = 𝑚 𝑎

𝑎0
−→𝑎. Considering a gravitational inter-

action between𝑀 and𝑚 we then have for the radial component of the modified Newton's second Law
𝐺 𝑀

𝑟2𝑚=𝑚 𝑎2
𝑎0 . The radial acceleration on a circular orbit of radius 𝑟 is always given by 𝑎 = 𝑣2𝑐,∞/𝑟, the mod-

ified second law writes now 𝐺 𝑀
𝑟2 =

𝑣4𝑐,∞
𝑟2𝑎0 which gives 𝑣𝑐,∞ = (𝑎0𝐺𝑀)1/4 , and thus𝑀 = 1

𝑎0𝐺 𝑣
4
𝑐,∞. Considering

the notation from D.1, this is a power law relation with 𝛾MOND = 4 in accordance with the Tully-Fischer
relation.

For the NGC 6946 galaxy, we read 𝑣𝑐,∞ = 160km ⋅ s−1 thus log10 ⒧
𝑣𝑐,∞

1km⋅s−1 ⒭ = 2.2 and one can read the corre-

sponding total mass by the Tully-Fischer relation as log(𝑀tot/𝑀⊙) = 10.5 thus 𝑀tot = 2.1040,5 kg. One can
obtain similar numbers using experimental data on the curve of Fig. 4. Introducing these values in the

relation 𝑎0 = 𝑣4𝑐,∞
𝐺𝑀tot

it gives 𝑎0 = 1.5×10−10m ⋅ s−2 as expected.

Marker Scheme
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D3.1 : Considering the hypothesis 𝑎 ≪𝑎0 0.1
D3.2 : Newton's second law 0.1
D3.3 : Expression for 𝑣𝑐,∞ 0.1
D3.4 : Numerical value for 𝛾𝑀𝑂𝑁𝐷 0.1
D3.5 : Numerical value for log10(𝑣𝑐,∞/1km/s) 0.1
D3.6 : Numerical value for log10(𝑀) 0.1
D3.7 : Expression for 𝑎0 0.1
D3.8 : Numerical value for 𝑎0 (good if nearest power of ten) 0.1

D.4 Considering relevant cases, determine 𝑣𝑐(𝑟) for all values of 𝑟 in the MOND the-
ory in the case of a gravitational field due to a homogeneously distributedmass
𝑀 with radius 𝑅𝑏.

0.9pt

SOLUTION:

Taking the full formula for 𝜇, the modified second law with circular velocity 𝑣𝑐 at radius 𝑟 writes now

𝒢(𝑟)𝑚 = −𝑚
𝑣2𝑓
𝑎0𝑟

1+
𝑣2𝑓
𝑎0𝑟

𝑣2𝑓
𝑟 where 𝒢(𝑟) is the gravitational field of the homogeneous ball of mass 𝑀 and with

radius 𝑅𝑏. This field can be deduced from Gauss' theorem it is

𝒢(𝑟) =
⎧
⎨
⎩

−𝐺𝑀/𝑟2 if 𝑟 > 𝑅𝑏
−𝐺𝑀𝑟/𝑅3

𝑏 if 𝑟 ≤ 𝑅𝑏
(5)

Outside the ball : 𝑟 > 𝑅𝑏. After a small reorganisation, 𝑣𝑐 appears to be solution of the biquadratic equa-
tion 𝑣4𝑐 − 𝐺𝑀

𝑟 𝑣2𝑐 −𝑎0𝐺𝑀 = 0 . The positive root of this equation is

𝑣𝑐(𝑟) =

⎷
𝐺𝑀
2𝑟

⎛
⎝
1+1+ 4𝑎0𝑟2

𝐺𝑀
⎞
⎠

which is valid only if 𝑟 > 𝑅𝑏 (6)

When 𝑟 →∞, 𝑣𝑐 is asymptotically constant and 𝑀 → 𝑣4𝑐,∞
𝑎0𝐺 which is the Tully-Fisher relation. Inside the ball

: 𝑟 ≤ 𝑅𝑏. With a similar reorganisation, 𝑣𝑐 appears now to be solution of another biquadratic equation

which is 𝑣4𝑐 − 𝐺𝑀
𝑟 ⒧ 𝑟

𝑅𝑏 ⒭
3𝑣2𝑐 −𝑎0𝐺𝑀 ⒧ 𝑟

𝑅𝑏 ⒭
3 = 0 . The positive solution is now

𝑣𝑐(𝑟) =

⎷
𝐺𝑀
2𝑟 ⒧ 𝑟

𝑅𝑏
⒭
3⎡
⎣
1+1+ 4𝑎0𝑟2

𝐺𝑀 ⒧𝑅𝑏𝑟 ⒭
3⎤
⎦

which is valid only if 𝑟 ≤ 𝑅𝑏 (7)

When 𝑟 → 0, we recover 𝑣𝑐 →0 as in the experimental data.
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D4.1 : Modified second law 0.1
D4.2 : Gravitational field in the case 𝑟 > 𝑅𝑏 0.1
D4.3 : Gravitational field in the case 𝑟 < 𝑅𝑏 0.1
D4.4 : Bi-quadratic equation in the case 𝑟 > 𝑅𝑏 0.1
D4.5 : Expression for 𝑣𝑐 in the case 𝑟 > 𝑅𝑏 0.1
D4.6 : Behaviour in the limit 𝑟 →∞ 0.1
D4.7 : Bi-quadractic equation for 𝑟 < 𝑅𝑏 0.1
D4.8 : Expression for 𝑣𝑐 when 𝑟 < 𝑅𝑏 0.1
D4.9 : Behaviour when 𝑟 → 0 0.1




