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Cox's Timepiece (10 points)
In 1765, British clockmaker James Cox invented a clock whose only source of energy is the fluctuations
in atmospheric pressure. Cox's clock used two vessels containing mercury. Changes in atmospheric
pressure caused mercury to move between the vessels, and the two vessels to move relative to each
other. This movement acted as an energy source for the actual clock.

We propose an analysis of this device. Throughout,
we assume that

• the Earth's gravitational field −→𝑔 = −𝑔−→𝑢𝑧 is uni-
form with 𝑔 = 9.8m ⋅ s−2 and −→𝑢𝑧 a unit vector;

• all liquids are incompressible and their density
is denoted 𝜌;

• no surface tension effects will be considered;
• the variations of atmospheric pressure with al-

titude are neglected;
• the surrounding temperature 𝑇a is uniform

and all transformations are isothermal.

Fig. 1. Artistic view of Cox's clock 1

Part A - Pulling on a submerged tube
We first consider a bath of water that occupies the semi-infinite space 𝑧 ≤ 0. The air above it is at a
pressure 𝑃a = 𝑃0. A cylindrical vertical tube of length 𝐻 = 1m, cross-sectional area 𝑆 = 10cm2 and mass
𝑚 = 0.5kg is dipped into the bath. The bottom end of the tube is open, and the top end of the tube is
closed. We denote ℎ the altitude of the top of the tube and 𝑧ℓ that of the water inside the tube. The
thickness of the tube walls is neglected.

a

−→𝑔

•

−→𝐹

𝐻

𝑧

−ℎ = 𝑧ℓ = 0

b

•

−→𝐹

𝑧

−0
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c

•

−→𝐹

𝑧

−0

−𝑧ℓ
−ℎ

Fig. 2. Sketch of the tube in different configurations
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We start from the situation where the tube in Fig. 2 contains no gas and its top is at the bath level: in
other words, ℎ = 0 and 𝑧ℓ = 0 (case a). The tube is then slowly lifted until its bottom end reaches the bath
level. The pulling force exerted on the tube is denoted

−→𝐹 =𝐹−→𝑢𝑧.

A.1 For the configuration shown in Fig. 2 (case b), express the pressure 𝑃w in the
water at the top of the tube. Also express the force

−→𝐹 necessary to maintain the
tube at this position. Expressions must be written in terms of 𝑃0, 𝜌, 𝑚, 𝑆, ℎ, 𝑔
and −→𝑢𝑧.

0.2pt

SOLUTION:

According to the hydrostatic law, one has

𝑃w = 𝑃a−𝜌𝑔ℎ = 𝑃0−𝜌𝑔ℎ

In the configuration shown in Fig. 2 (case b), the tube is submitted to three forces: its weight, the resul-
tant of the pressure forces and the force exerted by the operator. Thus, at equilibrium, one has

−→0=𝑚−→𝑔+⒧𝑃w−𝑃0⒭𝑆−→𝑢𝑧+
−→𝐹

which leads to

−→𝐹 =− 𝑚+𝜌𝑆ℎ−→𝑔 = 𝑚+𝜌𝑆ℎ𝑔−→𝑢𝑧

MARKING SCHEME:

Expression of 𝑃w (as a function of 𝑃a or 𝑃0) 0.1

Expression of
−→𝐹 0.1

Three experiments are performed. In each, the tube is lifted from the initial state shown in Fig. 2(a)
under the conditions specified in Table 1.

Experiment Liquid 𝑇a (°C) 𝜌 (kg ⋅m−3) 𝑃sat (Pa)
1 Water 20 1.00 × 103 2.34 × 103

2 Water 80 0.97 × 103 47.4 × 103

3 Water 99 0.96 × 103 99.8 × 103

Table 1. Experimental conditions and numerical values of physical quantities for each experiment

(𝑃sat designates the saturated vapour pressure of the pure fluid)

In each case, we study the evolution of the force 𝐹 that must be applied in order to maintain the tube
in equilibrium at an altitude ℎ, the external pressure being fixed at 𝑃a = 𝑃0 = 1.000×105Pa. Two different
behaviours are possible
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Behaviour A

0
ℎ

𝐹

𝐹0
|
𝐻

−𝐹max

Behaviour B

0
ℎ

𝐹

𝐹0
|
𝐻

−𝐹max

|
ℎ⋆

A.2 For each experiment, complete the table in the answer sheet to indicate the ex-
pected behaviour and the numerical values for𝐹max and forℎ⋆ (when pertinent),
where 𝐹max and ℎ⋆ are defined in the figures illustrating the two behaviours.

0.8pt

SOLUTION:

Physically, the altitude ℎ⋆ corresponds to the threshold at which saturated vapour appears in the tube.
This altitude can be expressed using the hydrostatic law, writing

𝑃w = 𝑃0−𝜌𝑔ℎ⋆ = 𝑃sat ⒧𝑇a⒭ .

One can find

ℎ⋆ = 𝑃0−𝑃sat ⒧𝑇a⒭
𝜌𝑔 ,

and calculate its numerical value for each experiment. If the value obtained is higher than 𝐻 , behaviour
A is observed; otherwise, behaviour B is observed. According to the previous question, the force 𝐹 is
related to ℎ by

𝐹 = 𝑚+𝜌𝑆ℎ𝑔

which leads to

𝐹max =
⎧⎪
⎨
⎪⎩

𝑚+𝜌𝑆𝐻𝑔 for behaviour A

𝑚+𝜌𝑆ℎ⋆𝑔 for behaviour B

One can deduce the following predictions:

Experiment Behaviour (A or B ?) ℎ⋆ (cm) 𝐹max (N)
1 A 14.7
2 A 14.4
3 B 2.1 5.1
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MARKING SCHEME:

All behaviours are correct (*all or nothing*): A/A/B 0.2
Experiment 1: Numerical value of 𝐹max in 14.6,15 (N) 0.1
Experiment 2: Numerical value of 𝐹max in 14,14.5 (N) 0.1
Experiment 3: Numerical value of ℎ⋆ in 2,2.2 (cm) (0.1 pt if
only literal expression is correct)

0.2

Experiment 3: Numerical value of 𝐹max in 5,5.2 (N) (0.1 pt if
only literal expression is correct)

0.2

When we replace the water with liquid mercury (whose properties are given below), behaviour B is ob-
served.

Liquid 𝑇a (°C) 𝜌 (kg ⋅m−3) 𝑃sat (Pa)
Mercury 20 13.5 × 103 0.163

A.3 Express the relative error, denoted 𝜀, committed when we evaluate the maximal
force 𝐹max neglecting 𝑃sat compared to 𝑃0. Give the numerical value of 𝜀.

0.3pt

SOLUTION:

For behaviour B, the expression of 𝐹max previously obtained can be reformulated as

𝐹max =𝑚𝑔+⒧𝑃0−𝑃sat⒭𝑆

Neglecting the saturated vapour pressure compared to the atmospheric pressure, one obtains

𝐹max ≃𝑚𝑔+𝑃0 𝑆

Thus, the relative error 𝜀 is given by

𝜀 = 𝑃sat
𝑃0+𝑚𝑔/𝑆 ≃ 1.6×10−6

MARKING SCHEME:

Literal expression of 𝜀 (with or without 𝑃sat in denominator) 0.2
Numerical value of 𝜀 in 1,2×10−6 0.1

Part B - Two-part barometric tube
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From now on, we work with mercury (density
𝜌 = 13.5 × 103 kg ⋅m−3) at the ambient tempera-
ture 𝑇a = 20°C and we take 𝑃sat = 0.

Let us consider a tube with a reservoir on top,
modeled as two superposed cylinders of differ-
ent dimensions, as shown in Fig. 3.

• the bottom part (still called the tube)
has cross-sectional area 𝑆t and height
𝐻t = 80cm ;

• the top part (called the bulb) has
cross-sectional area 𝑆b > 𝑆t and height
𝐻b = 20cm.

This two-part tube is dipped into a semi-infinite
liquid bath.

•

𝑧

−0

−ℎt

𝐻t = 80cm

𝐻b = 20cm−𝑧ℓ

−→𝑔−→𝐹

Fig. 3. Sketch of the two-part barometric tube

As in Part A, the system is prepared such that the tube contains no air. We identify the vertical position
of the tube by the altitude ℎt of the junction between the tube and the bulb. The height of the column
of mercury is again denoted 𝑧ℓ. The force

−→𝐹 that must be exerted to maintain the tube in equilibrium in
the configuration shown in Fig. 3 can now be written as

−→𝐹 = ⒧𝑚tb+𝑚add⒭𝑔−→𝑢𝑧 (1)

where 𝑚tb is the total mass of the two-part tube (when empty of mercury).

B.1 On the answer sheet, color the area corresponding to the volume of liquid mer-
cury that is responsible for the term 𝑚add appearing in equation (1).

0.3pt

SOLUTION:

By adapting the reasoning used at part A, one can deduce that the mass 𝑚add corresponds to the liquid
mass in the two-part tube which is above the outside surface of the liquid bath, as shown below.

𝑧

−0

−𝑧ℓ 𝑚add
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MARKING SCHEME:

Coloring of the correct area (0.1 pt only if a correct
expression of 𝑚add is provided but the colored area is
incorrect)

0.3

The mass 𝑚add depends both on the height ℎt and the atmospheric pressure 𝑃a. For the next question,
assume that the atmospheric pressure is fixed at 𝑃a = 𝑃0 = 1.000×105Pa. Starting from the situation where
the system is completely submerged, the tube is slowly lifted until its base is flush with the liquid bath.

B.2 Sketch the evolution of the mass 𝑚add as a function of ℎt for ℎt ∈ −𝐻b,𝐻t. On
the graph, provide the expression for the slopes of the different segments, as
well as the ℎt analytical value of any angular points, in terms of 𝑃0, 𝜌, 𝑔, 𝑆b, 𝑆t,
𝐻b and 𝐻t.

1.4pt

SOLUTION:

Using the same reasoning as in question A2, one can determine that saturated vapour appears in the
two-part barometric tube when the altitude of the liquid column in the tube reaches the critical value

𝑧⋆ℓ =
𝑃0−𝑃sat
𝜌𝑔 = 𝑃0

𝜌𝑔 = 76cm

taking 𝑃sat = 0. Combining this result with that of the previous question, one obtains the following graph:

ℎt

𝑚add

0
|

−𝐻b

|
𝑧⋆ℓ −𝐻b
(= 56cm)

|
𝑧⋆ℓ

(= 76cm)

|
𝐻t

slope : 𝜌𝑆b

slope : 𝜌𝑆t
slope : −𝜌 ⒧𝑆b−𝑆t⒭

slope : 0

MARKING SCHEME:
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Qualitative aspect: Graph with 4 straight pieces (0.1pt only if
there are 3 pieces; 0 else)

0.2

Qualitative aspect: For the 1st & 2nd pieces, the slopes are
positive *and* the slope of 2nd piece is less than that of 1st
(*all or nothing*)

0.2

Qualitative aspect: The 3rd piece has a negative slope 0.2
Qualitative aspect: The 4th piece has a null slope 0.2
Expressions of the two first slopes (*all or nothing*) 0.1
Expression of the negative slope 0.2
ℎt analytical values of the 3 intermediate angular points
(0.1pt per value)

0.3

As the system is lifted while 𝑃a = 𝑃0 = 105Pa, we stop when the free surface of the liquid is in the middle
of the bulb. The value of ℎt is fixed and then we observe variations in the mass 𝑚add due to variations in
the atmospheric pressure described by

𝑃a (𝑡) = 𝑃0+𝑃1 (𝑡) (2)

where 𝑃0 designates the average value and 𝑃1 is a perturbative term. We model 𝑃1 by a periodic triangular
function of amplitude 𝐴 = 5×102Pa and period 𝜏1 of 1 week.

0 𝑡

𝑃1 (𝑡)

−−𝐴

−𝐴
𝜏1

Fig. 4. Simplified model of the perturbative term 𝑃1 (𝑡)

B.3 Given that 𝑆t = 5cm2 and 𝑆b = 200cm2, express the amplitude 𝛥𝑚add of the varia-
tions of the mass 𝑚add over time, then give its numerical value. Assume that the
liquid surface always stays in the bulb.

0.3pt

SOLUTION:

By neglecting the saturated vapour pressure in the bulb, the altitude 𝑧ℓ of the free surface of the liquid
in the tube is given by

𝑧ℓ (𝑡) =
𝑃a (𝑡)
𝜌𝑔 = 𝑃0

𝜌𝑔 + 𝑃1 (𝑡)
𝜌𝑔 = ℎt+

𝐻b
2

mean value 𝑧ℓ,0

+ 𝑃1 (𝑡)
𝜌𝑔

perturbative term

which leads to
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𝑚add (𝑡) = 𝜌𝑆tℎt+𝑆b ⒧𝑧ℓ (𝑡)−ℎt⒭  = 𝜌 𝑆tℎt+𝑆b ⒧𝑧ℓ,0−ℎt⒭+
𝑆b𝑃1 (𝑡)

𝑔

The first term gives the mean value of the mass 𝑚add (𝑡), while the last term characterizes its temporal
variations. One can deduce the magnitude

𝛥𝑚add =
𝑆b𝐴
𝑔 ≃ 1kg

MARKING SCHEME:

Literal expression of 𝛥𝑚add 0.2
Numerical value *with unit*, in 1kg,1.1kg 0.1

Part C - Cox's timepiece
The real mechanism developed by Cox is complex (Fig. 5). We study a simplified version, depicted in Fig.
6, and described below

• a cylindrical bottom cistern containing a mercury bath ;

• a two-part barometric tube identical to that studied in part B, which is still completely emptied of
any air, is dipped into the bath ;

• the cistern and the two-part tube are each suspended by a cable. Both cables (assumed to be
inextensible and of negligible mass) pass through a system of ideal pullies and finish attached to
either side of the same mass 𝑀 , which can slide on a horizontal surface ;

• the total volume of liquid mercury contained in the system is 𝑉ℓ = 5L.

The height, cross-section and masses of each part are given in Table 2. The position of mass 𝑀 is ref-
erenced by the coordinate 𝑥 of its center of mass. We consider solid friction between the horizontal
support and the mass 𝑀 , without distinction between static and dynamic coefficients; the magnitude of
this force when sliding occurs is denoted 𝐹s.
Two stops limit the displacement of the mass 𝑀 such that −𝑋 ≤ 𝑥 ≤𝑋 (with 𝑋 > 0). Assume that the value
of 𝑋 guarantees that

• the bottom of the two-part tube never touches the bottom of the cistern nor comes out of the liquid
bath;

• the altitude 𝑧ℓ of the mercury column is always in the upper bulb.
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Fig. 5. Real Cox's timepiece 2 (without
mercury)

𝑀

𝑥
𝑥
|
𝑋

|
−𝑋

••

• •

• •

••

•−→𝑔

liquid mercury

1

2

2′

Fig. 6. Sketch of the system modeling the timepiece

Reference Name Height Cross section area Empty mass

1 cistern 𝐻c = 30cm 𝑆c = 210cm2 𝑚c

2 tubular part of the
barometric tube

𝐻t = 80cm 𝑆t = 5cm2
total mass of

the barometric
tube : 𝑚tb2′ bulb of the

barometric tube
𝐻b = 20cm 𝑆b = 200cm2

Table 2. Dimensions and notations for the model system

The system evolves in contact with the atmosphere, whose pressure fluctuates as in Fig. 4 (still with
amplitude 𝐴 = 5×102Pa and period 𝜏1 = 1week). At the start 𝑡 = 0, the mass 𝑀 is at rest at 𝑥 = 0 and the
tensions exerted by the two cables on either side of the mass 𝑀 are in balance while 𝑃1 (0) = 0. We define

𝜉 = 𝑆b+𝑆c−𝑆t
𝑆b 𝑆c

𝐹s
𝐴 ≃ 𝑆b+𝑆c

𝑆b 𝑆c
𝐹s
𝐴 (3)

where the last expression uses that 𝑆t ≪𝑆b, 𝑆c (which we will assume is valid until the end of the problem).

C.1 Determine the threshold 𝜉⋆ such that𝑀 remains indefinitely at rest when 𝜉 > 𝜉⋆. 1pt
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SOLUTION:

Consider the case in which the mass 𝑀 stays at rest at 𝑥 = 0. At the start 𝑡 = 0, the tensions exerted
by the two cables on either side of the mass 𝑀 are in balance: the force 𝐹0 required to suspend the
barometric tube (with the fluid it contains) is equal to that required to suspend the cistern (with the fluid
it contains). When the atmospheric pressure increases from 𝑃a = 𝑃0, the fluid rises in the barometric tube
while it descends in the cistern. As a result, the added mass in the tube increases, while the added mass
in the cistern decreases. We denote 𝑚1,tb and 𝑚1,c the (algebraic) variation of the apparent masses of
each container. Thus, the tensions exerted by the two cables can be written:

• 𝐹0+𝑚1,tb𝑔−→𝑢𝑥 for the cable on the right, suspending the tube;

• −𝐹0+𝑚1,c𝑔−→𝑢𝑥 for the cable on the left, suspending the cistern.

According to the principle of mass conservation, one can immediately state that 𝑚1,tb = −𝑚1,c. Subse-
quently, we choose to keep only 𝑚1,c in the expressions (but all the calculations can be carried out while
keeping 𝑚1,tb).

𝑀

𝑥|
0

••

•
•

•
−𝐹0−→𝑢𝑥 • •

•
•

•
+𝐹0−→𝑢𝑥

•

𝑀

𝑥

•−→𝑅t

|
0

••

•
•

•
− ⒧𝐹0+𝑚1,c𝑔⒭ −→𝑢𝑥 • •

•
•

•
+ ⒧𝐹0+𝑚1,tb𝑔⒭ −→𝑢𝑥

•

−→𝑔

𝛥𝑧ℓ,0 =
𝑃0
𝜌𝑔

𝛿b

𝛿c

𝛥𝑧ℓ (𝑡) =
𝑃a
𝜌𝑔 (𝑡)

When 𝑃a = 𝑃0 When 𝑃a increases

The friction force between the support and the mass 𝑀 needed to maintain the equilibrium is therefore
given by
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−→𝑅t =−𝐹0−𝑚1,c𝑔−→𝑢𝑥 +𝐹0+𝑚1,c𝑔−→𝑢𝑥 = 2𝑚1,c𝑔−→𝑢𝑥

In addition, according to the sketch above (where displacements 𝛿b and 𝛿c are algebraic), we have
𝑚1,c = 𝜌𝑆c𝛿c.
It is now necessary to determine 𝛿c. One can use

• the hydrostatic law : 𝛿b−𝛿c =
𝑃1
𝜌𝑔

• the conservation of the total volume/mass of mercury : 𝑆b𝛿b = −𝑆c−𝑆t𝛿c ≃ −𝑆c𝛿c (given that
𝑆t ≪𝑆b,𝑆c)

Solving the system formed by those equations, one finds

𝛿c =− 𝑆b
𝑆b+𝑆c−𝑆t

𝑃1
𝜌𝑔 ≃− 𝑆b

𝑆b+𝑆c
𝑃1
𝜌𝑔

which finally yields

−→𝑅t =− 2𝑆b 𝑆c
𝑆b+𝑆c−𝑆t

𝑃1−→𝑢𝑥 ≃− 2𝑆b 𝑆c
𝑆b+𝑆c

𝑃1−→𝑢𝑥

With the triangular model for 𝑃1 (𝑡), the maximum static friction force is obtained when 𝑃1 = ±𝐴. There-
fore, according to the Coulomb's law of friction, the mass 𝑀 stays at rest if and only if

2𝑆b 𝑆c
𝑆b+𝑆c−𝑆t

𝐴 < 𝐹s

This inequality can be rewritten as

2 < 𝑆b+𝑆c−𝑆t
𝑆b 𝑆c

𝐹s
𝐴 = 𝜉

which allows us to identify

𝜉⋆ = 2

MARKING SCHEME:
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Introduction of geometric parameters to locate the positions
of the fluid surfaces in each vessel

0.1

Expression of mass or volume variation of fluid in at least
one of the vessels, in terms of those geometric parameters
(with or without using 𝑆t ≪𝑆b,𝑆c)

0.1

Physical law: Conservation of the total mass/volume 0.2
Physical law: Expression of barometric difference of heights
between the two surfaces

0.2

Physical law: Expression of the friction force at equilibrium
(with or without using 𝑆t ≪𝑆b,𝑆c)

0.1

Physical law: Use of Coulomb's law in sticky situation 0.1
Conclusion: Obtaining 𝜉⋆ 0.2

For the next question only, suppose that the mass 𝑀 is temporarily blocked at 𝑥 = 𝑋 .

C.2 Give an expression for the total tension force
−→𝑇 = 𝑇 −→𝑢𝑥 acting on the mass 𝑀

due to the tension in two cables at this position, when 𝑃1 = 0, in terms of 𝜌, 𝑔, 𝑋
and pertinent cross-sections.

1pt

SOLUTION:

Let us compare the configurations of the system when 𝑥 = 0 and when 𝑥 = 𝑋 .
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𝑀

𝑥|
0

••

•
•

•
−𝐹0−→𝑢𝑥 • •

•
•

•
+𝐹0−→𝑢𝑥

•

𝑀

𝑥|
0
|
𝑋

••

•
•

•
− ⒧𝐹0+𝑚1,c𝑔⒭−→𝑢𝑥 • •

•
•

•
+ ⒧𝐹0+𝑚1,tb𝑔⒭ −→𝑢𝑥

•

−→𝑔

𝛥𝑧ℓ,0 =
𝑃0
𝜌𝑔

𝛿b

−𝑋

𝛿c

𝑋

𝛥𝑧ℓ,0

At 𝑥 = 0 At 𝑥 = 𝑋

Assuming that the atmospheric pressure is temporarily fixed at 𝑃0, the difference 𝛥𝑧ℓ of fluid heights be-
tween the cistern and the barometric tube is the same in both configurations. It is given by 𝛥𝑧ℓ,0 = 𝑃0/𝜌𝑔
and leads to

𝛿b = 𝛿c

The total volume/mass of mercury is also conserved. This conservation can be expressed by the equation

⒧𝑆c−𝑆t⒭𝛿c−⒧𝑆c+𝑆t⒭ 𝑋
volume of mercury

algebraically won by the cistern

+ 𝑆b ⒧𝛿b+𝑋⒭
volume of mercury

algebraically won by the bulb

= 0

which can be reformulated as

𝑆b𝛿b+⒧𝑆c−𝑆t⒭ 𝛿c = ⒧𝑆c−𝑆b+𝑆t⒭ 𝑋

One obtains
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𝛿b = 𝛿c =
𝑆c−𝑆b+𝑆t
𝑆b+𝑆c−𝑆t

𝑋

Thus, the supplementary added mass in the cistern is given by

𝑚1,c = 𝜌𝑆c ⒧𝛿c−𝑋⒭ = −𝜌 2𝑆c ⒧𝑆b−𝑆t⒭𝑆c+𝑆b−𝑆t
𝑋 ≃− 2𝑆b 𝑆c

𝑆b+𝑆c
𝜌𝑋

and, as explained in C1, we still have 𝑚1,tb =−𝑚1,c.

Finally, according to the sketch, one obtain the resultant tension force
−→𝑇 = ⒧𝑚1,tb−𝑚1,c⒭𝑔−→𝑢𝑥 =−2𝑚1,c𝑔−→𝑢𝑥,

that is

−→𝑇 = 4𝑆c ⒧𝑆b−𝑆t⒭
𝑆b+𝑆c−𝑆t

𝜌𝑔𝑋 −→𝑢𝑥 ≃
4𝑆b 𝑆c
𝑆b+𝑆c

𝜌𝑔𝑋 −→𝑢𝑥

MARKING SCHEME:

Introduction of geometric parameters to locate the positions
of the fluid surfaces in each vessel

0.1

Expressions of mass or volume variations of fluid in one of
the vessels in terms of 𝑋 and those geometric parameters
(with or without using 𝑆t ≪𝑆b,𝑆c)

0.3

Physical law: Conservation of the total mass/volume 0.2
Physical law: Expression of barometric difference of heights
between the two surfaces

0.2

Expression of the total tension force
−→𝑇 (with or without using

𝑆t ≪𝑆b,𝑆c)
0.2

When 𝜉 < 𝜉⋆, starting again from 𝑥 = 0 and 𝑃1 = 0, two different behaviours can be observed for 𝑡 ≥ 0. To
distinguish them, we need to introduce another parameter

𝜆 = 2⒧𝑆b−𝑆t⒭
𝑆b

𝜌𝑔𝑋
𝐴 ≃ 2𝜌𝑔𝑋

𝐴 (4)

C.3 Complete the table in the answer sheet to indicate the condition under which
each regime is obtained. Conditions must be expressed as inequalities on 𝜉
and/or 𝜆. In addition, sketch the variations of 𝑥(𝑡)/𝑋 for 𝑡 ∈ 0, 3𝜏1 that are con-
sistent with the variations of 𝑃1 (𝑡)/𝐴 already present. Specification of remarkable
points coordinates is not required.

2pt

SOLUTION:

When 𝜉 < 𝜉⋆, there necessarily exists an instant from which the mass 𝑀 begins to sweep on the right.
From there, the mass 𝑀 is continuously accelerated by the total tension

−→𝑇 until it is blocked by the stop
at 𝑥 = 𝑋 . According to Fig. 5, one can assume that 𝑋 is of the order of a few centimeters, so the time
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needed to switch between the two positions 𝑥 = 0 and 𝑥 = 𝑋 can reasonably be neglected in front of the
period 𝜏1.

Once blocked at 𝑥 = 𝑋 , the resultant tension
−→𝑇 can be determined by generalizing the reasoning carried

out in the two previous questions. One obtains the following equations:

• hydrostatic law : 𝛿b−𝛿c =
𝑃1
𝜌𝑔

• conservation of the volume/mass : 𝑆b𝛿b+⒧𝑆c−𝑆t⒭𝛿c = ⒧𝑆c−𝑆b+𝑆t⒭𝑋
The resolution of this system gives

𝛿c =
𝑆c−𝑆b+𝑆t
𝑆b+𝑆c−𝑆t

𝑋 − 𝑆b
𝑆b+𝑆c−𝑆t

𝑃1
𝜌𝑔

from which we deduce the perturbative added mass

𝑚1,c = 𝜌𝑆c ⒧𝛿c−𝑋⒭ = −𝜌2𝑆c ⒧𝑆b−𝑆t⒭𝑆b+𝑆c−𝑆t
𝑋 + 𝑆b 𝑆c

𝑆b+𝑆c−𝑆t
𝑃1
𝜌𝑔 = −𝑚1,tb

Then finally

−→𝑇 =−2𝑚1,c𝑔−→𝑢𝑥 = 4𝑆c ⒧𝑆b−𝑆t⒭𝑆b+𝑆c−𝑆t
𝜌𝑔𝑋 + 2𝑆b 𝑆c

𝑆b+𝑆c−𝑆t
𝑃1 −→𝑢𝑥

According to Coulomb's law of friction, the mass 𝑀 will stay at rest at the position 𝑥 = 𝑋 while
−→𝑇 ⋅−→𝑢𝑥 >−𝐹s.

With the model adopted for 𝑃1 (𝑡), this condition is always satisfied if

4𝑆c ⒧𝑆b−𝑆t⒭
𝑆b+𝑆c−𝑆t

𝜌𝑔𝑋 − 2𝑆b 𝑆c
𝑆b+𝑆c−𝑆t

𝐴 >−𝐹𝑠

Hence, using the parameters 𝜉 and 𝜆, one can identify the two possible regimes :

• Regime 1 : 𝜉+2𝜆 > 2 (once at 𝑥 = 𝑋 , the mass 𝑀 stays indefinitely at rest)

0 𝑡

𝑥 (𝑡)/𝑋

−−1

−1

|
𝜏1

|
2𝜏1

|
3𝜏1

• Regime 2 : 𝜉 +2𝜆 < 2 (once at 𝑥 = 𝑋 , the mass 𝑀 will periodically sweep between the two
stops)
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0 𝑡

𝑥 (𝑡)/𝑋

−−1

−1

|
𝜏1

|
2𝜏1

|
3𝜏1

MARKING SCHEME:

Expression for
−→𝑇 in the general case, containing both 𝑃1and

𝑋 terms.
0.2

At least one inequality is correct (without considering strict
or large)

0.2

Both inequalities are correct (without considering strict or
large)

0.1

Global appearance of *both* graphs: one seems to show an
aperiodic behaviour, the other a periodic behaviour (*all or
nothing*)

0.2

Global appearance: each graph is in accordance with the
correct sign of obtained inequality (focus on symbols > / <,
without considering if the inequality is strict or large)

0.2

Either graph 1 or 2 shows: A first switch from 𝑥 = 0 to 𝑥 = 𝑋
that begins somewhere in the interval 𝑡 ∈ ⒧0, 𝜏14 

0.2

Either graph 1 or 2 shows: The switch is instantaneous 0.2
Graph in aperiodic regime: 𝑥 = 𝑋 for all times after the first
switch

0.1

Graph in periodic regime: the behaviour is periodic with
period 𝜏1(except for the first switch)

0.1

Graph in periodic regime: the positive and negative parts of
the graph are similar

0.2

Graph in periodic regime: 𝑥(𝑡)/𝑋 is described by a
rectangular function, of magnitude 1 and duty cycle 50% in
steady state

0.2

Graph in periodic regime: the first step at 𝑥 = 𝑋 last longer
than others

0.1

In the real Cox's timepiece, energy provided by the mechanism is stored using a system of ratchets
and used to raise a counterweight, like in a traditional clock. In the simplified model studied here, the
energy recovered by the clock corresponds to the energy dissipated by the friction force exerted by the
horizontal surface on the mass 𝑀 . From now on, we assume that the system is dimensioned such that
to work in the regime that allows the clock to recuperate energy. We also assume that the permanent
regime is established. We denote 𝑊 the energy dissipated by the solid friction force during a period 𝜏1,
which can be expressed only in terms of 𝐹s and 𝑋 .
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All else equal, 𝐹s and 𝑋 can be adjusted to maximize the energy 𝑊 ; we denote 𝐹⋆
s and 𝑋⋆ their respective

values in the optimal situation.

C.4 Considering 𝑆b ≃ 𝑆c and 𝑆t ≪ 𝑆b, determine the expressions for 𝐹⋆
s and 𝑋⋆ as

functions of 𝜌, 𝑔, 𝑆c and 𝐴. Express the corresponding maximum energy 𝑊 ⋆,
then calculate its numerical value with 𝐴 = 5×102Pa.

1pt

SOLUTION:

During a period, there is one motion to the left and one to the right. The total length of the displacement
is 4𝑋 . The total work 𝑊 of the friction force is thus 𝑊 =4𝐹S 𝑋 .

We have to optimize this quantity with the constraint 𝜉+2𝜆 ≤ 2, which can also be written as

2𝜌𝑔𝑋
𝐴 + 𝐹s

𝑆c𝐴
≤ 1

The optimum is obtained at the limit of the condition, when 𝐹S = 𝑆c ⒧𝐴−2𝜌𝑔𝑋⒭. The work is then
𝑊 =4𝑋 𝑆c ⒧𝐴−2𝜌𝑔𝑋⒭. It is maximal for

𝑋⋆ = 𝐴
4𝜌𝑔 and 𝐹⋆

s =
𝐴𝑆c
2

leading to the following optimal work

𝑊 ⋆ = 𝐴2 𝑆c
2𝜌𝑔 ≃ 20mJ

MARKING SCHEME:

Starting point: 𝑊 =4𝐹s𝑋 0.2
Optimization: 𝜉+2𝜆 = 2 or equivalent 𝐹s = 𝑆c⒧𝐴−2𝑔𝑋⒭ 0.3
Expression of 𝑋⋆ 0.1
Expression of 𝐹⋆

s 0.1
Expression of 𝑊 ⋆ 0.2
Numerical value for 𝑊 ⋆ *with unit*: in [19mJ,21mJ] 0.1

We denote 𝑊 ⋆
pr the work of atmospheric pressure forces received by the system in the optimal situation

during a period 𝜏1.

C.5 Express 𝑊 ⋆
pr, then calculate the ratio 𝑊 ⋆/𝑊 ⋆

pr. It could be useful to represent the
evolution of the system in a (𝑃,𝑉 ) diagram, where 𝑉 is the system's volume.

1.7pt

SOLUTION:

The variations of pressure and of the vessel's position lead to fluid transfer between the cistern and
the two-part tube. As a consequence, the total volume 𝑉 (𝑡) occupied by the system in the atmosphere
changes and can be denoted
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𝑉 (𝑡) = 𝑉0+𝑉1(𝑡)

where 𝑉0 is the volume in the initial state (when 𝑥 = 0 and 𝑃a = 𝑃0) whereas 𝑉1(𝑡) is a perturbation term.
Physically, 𝑉1 corresponds to the change of the volume of liquid in the cistern, and is thus given by

𝑉1 =
𝑚1,c
𝜌

where 𝑚1,c has already been expressed in C3 (just replace 𝑋 with 𝑥(𝑡)). Given that 𝑆b ≃ 𝑆c and 𝑆t is ne-
glected, one obtains in any state

𝑉1(𝑡) = −𝑆c𝑥(𝑡)+
𝑃1(𝑡)
2𝜌𝑔  = −𝑆c𝑋 

𝑥(𝑡)
𝑋 + 1

𝜆
𝑃1(𝑡)
𝐴 

Over one period, the work of atmospheric pressure forces received by the system is defined as

𝑊pr =
1 period

−𝑃ad𝑉 =− 
1 period

𝑃1d𝑉1

and can thus be identified to the area of the cycle described by the system in a ⒧𝑃1,𝑉1⒭ diagram.

Considering the optimal situation determined in the previous question, one observes the following be-
haviour once in steady state

0 𝑡

-1

1

𝑃1 (𝑡)/𝐴

0 𝑡

-1

1

𝑥(𝑡)/𝑋⋆

1 2

3 4

1

State 𝑃1 𝑥 𝑉1
1 𝐴 𝑋⋆ −3𝑆c𝑋⋆

2 −𝐴 𝑋⋆ 𝑆c𝑋⋆

3 −𝐴 −𝑋⋆ 3𝑆c𝑋⋆

4 𝐴 −𝑋⋆ −𝑆c𝑋⋆

Therefore, one can draw the following cycle in a ⒧𝑃1,𝑉1⒭ diagram
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𝑃1

𝑉1
0

−𝐴

−−𝐴

|
𝑆c𝑋⋆

|
−𝑆c𝑋⋆

|
3𝑆c𝑋⋆

|
−3𝑆c𝑋⋆

1

2 3

4

The work of the pressure force is the surface area inside this parallelogram, that is the product of its base
2𝑆c 𝑋⋆ by its height 2𝐴. As a consequence

𝑊 ⋆
pr = 4𝑆c𝑋⋆𝐴 = 𝑆c𝐴2

𝜌𝑔

and

𝑊 ⋆

𝑊 ⋆
pr
= 1
2

MARKING SCHEME:

Physical analysis: In the optimal case, the mass 𝑀 switches
between the two positions 𝑥 =±𝑋 when 𝑃1 =±𝐴

0.1

Physical analysis: During a period, the system describes a
cycle formed of 2 iso-𝑥 and 2 iso-𝑃 transformations (sketch
of cycle, or a table or any other pertinent description)

0.2

Physical analysis: Correct sequence of the successive states
and/or direction of the cycle using 𝑥 and 𝑃

0.2

General expression of the volume of the system in an (𝑃,𝑥)
state: 𝑉 =−𝑆c𝑥+

𝑃1
2𝜌𝑔 +Cste

0.3

Expressions of the volume in the 4 states of the cycle:
−3𝑆c𝑋⋆ ⟶ 𝑆c𝑋⋆ ⟶ 3𝑆c𝑋⋆ ⟶ −𝑆c𝑋⋆(*all or nothing*)

0.2

Method used to calculate the work of atmospheric pressure
forces: 𝑊pr =− 

1 period
𝑃ad𝑉 (explicit integral or area of the

cycle in (𝑃,𝑉 ) diagram or other pertinent method)

0.2

Obtaining 𝑊 ⋆
pr = 4𝑆c𝑋⋆𝐴 = 𝑆c𝐴2

𝜌𝑔 0.2

Final result:
𝑊 ⋆

𝑊 ⋆
pr
= 1
2 0.3
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Credits:
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